Use of FDG-microPET for detection of small nodules in a rabbit model of pulmonary metastatic cancer (original) (raw)

References

  1. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 1990; 31: 1927–1932.
    PubMed CAS Google Scholar
  2. Di Chiro G. Positron emission tomography using [15F] fluorodeoxyglucose in brain tumors: a powerful diagnostic and prognostic tool.Invest Radiol 1987; 22: 360–371.
    Article PubMed CAS Google Scholar
  3. Slosman DO, Spiliopoulos A, Couson F, Nicod L, Louis O, Lemoine R, et al. Satellite PET and lung cancer: a prospective study in surgical patients.Nucl Med Commun 1993; 14: 955–961.
    Article PubMed CAS Google Scholar
  4. Hubner KF, Buonocore E, Singh SK, Gould HR, Cotton DW. Characterization of chest masses by FDG positron emission tomography.Clin Nucl Med 1995; 20: 293–298.
    Article PubMed CAS Google Scholar
  5. Gupta NC, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET.J Nucl Med 1996; 37: 943–948.
    PubMed CAS Google Scholar
  6. Dewan NA, Shehan CJ, Reeb SD, Gobar LS, Scott WJ, Ryschon K, et al. Likelihood of malignancy in a solitary pulmonary nodule: comparison of Bayesian analysis and results of FDG-PET scan.Chest 1997; 112: 416–422.
    Article PubMed CAS Google Scholar
  7. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al.18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax.J Nucl Med 2003; 44: 540–548.
    PubMed CAS Google Scholar
  8. Yonekura Y, Benua RS, Brill AB, Som P, Yeh SD, Kemeny NE, et al. Increased accumulation of 2-deoxy-2-18F-2-fluoro-d-glucose in liver metastases from colon carcinoma.J Nucl Med 1982; 23: 1133–1137.
    PubMed CAS Google Scholar
  9. Messa C, Choi Y, Hoh CK, Jacobs EL, Glaspy JA, Rege S, et al. Quantification of glucose utilization in liver metastases: parametric imaging of FDG uptake with PET.J Comput Assist Tomogr 1992; 16: 684–689.
    Article PubMed CAS Google Scholar
  10. Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989; 170: 329–332.
    PubMed CAS Google Scholar
  11. Okazumi S, Isono K, Enomoto K, Kikuchi T, Ozaki M, Yamamoto H, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment.J Nucl Med 1992; 33: 333–339.
    PubMed CAS Google Scholar
  12. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (18F): nontoxic tracer for rapid tumor detection.J Nucl Med 1980; 21: 670–675.
    PubMed CAS Google Scholar
  13. Fukuda H, Matsuzawa T, Abe Y, Endo Y, Kubota K, Hatazawa J, et al. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs:18F-2-fluoro-deoxy-d-mannose: a new tracer for cancer detection.Eur J Nucl Med 1982; 7: 294–297.
    PubMed CAS Google Scholar
  14. Fukuda H, Yoshioka S, Watanuki S, Kiyosawa M, Sato T, Matsuzawa T, et al. Experimental study for cancer diagnosis with18FDG: differential diagnosis of inflammation from malignant tumor.KAKU IGAKU (Jpn J Nucl Med) 1983; 20: 1189–1192.
    CAS Google Scholar
  15. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Autoradiographic demonstration of [18F]FDG distribution within mouse FM3A tumor tissue_in vivo_.KAKU IGAKU (Jpn J Nucl Med) 1992; 29: 1215–1221.
    CAS Google Scholar
  16. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, et al. Increased18F-FDG uptake in a model of inflammation: Concanavalin A-mediated lymphocyte activation.J Nucl Med 2001; 43: 658–663.
    Google Scholar
  17. Cherry SR, Shao Y, Silverman RW, Meador K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals.IEEE Trans Nucl Sci 1997; 44: 1161–1166.
    Article CAS Google Scholar
  18. Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging.J Nucl Med 1999; 40: 1164–1175.
    PubMed CAS Google Scholar
  19. Tai YC, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, et al. Performance evaluation of microPET P4: a PET system dedicated to animal imaging.Phys Med Biol 2001; 46: 1845–1862.
    Article PubMed CAS Google Scholar
  20. Moore A, Osteen CL, Chatziioannou AF, Hovda DA, Cherry SR. Quantitative assessment of longitudinal metabolic changes_in vivo_ after traumatic brain injury in the adult rat using FDG-microPET.J Cereb Blood Flow Metab 2000; 20: 1492–1501.
    Article PubMed CAS Google Scholar
  21. Komblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR.In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET).Nature Biotech 2000; 18: 655–660.
    Article CAS Google Scholar
  22. Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different type of anesthesia: Comparison between quantitative data obtained with microPET and_ex vivo_ autoradiography.Neuroimage 2003; 20: 2040–2050.
    Article PubMed Google Scholar
  23. Oyama N, Kim J, Jones LA, Mercer NM, Engelbach JA, Sharp TL, et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate cancer tumor model.Nucl Med Biol 2002; 29: 783–790.
    Article PubMed CAS Google Scholar
  24. Oya N, Nagata Y, Ishigaki T, Abe M, Tamaki N, Magata Y, et al. Evaluation of experimental liver tumors using fluorine-18-2-deoxy-d-glucose_PET_.J Nucl Med 1993; 34: 2124–2129.
    PubMed CAS Google Scholar
  25. Oya N, Nagata Y, Tamaki N, Takagi T, Murata R, Magata Y, et al. FDG-PET evaluation of therapeutic effect on VX2 liver tumor.J Nucl Med 1996; 37: 296–302.
    PubMed CAS Google Scholar
  26. Kim WS, Im JG, Chung EC, Han MH, Han JK, Han MC, et al. Hematogenous pulmonary metastasis: an experimental study using VX-2 carcinoma in rabbits.Acta Radiologica 1993; 34: 581–585.
    Article PubMed CAS Google Scholar
  27. Kidd JG, Rous P. A transplantable rabbit carcinoma originating in a virus-induced papilloma and containing the virus in masked or altered form.J Exp Med 1940; 71: 813.
    Article PubMed CAS Google Scholar
  28. Concorde Microsystems: A primer for quantification using microPET systems. Rev. 3, microPET manuals, 2003. 29. Burgener FA. Peripheral hepatic artery embolization in rabbits with VX2 carcinomas of the liver.Cancer 1980; 46: 56–63.
    Article Google Scholar
  29. Burgener FA, Gothlin JH. Angiographic, microangiographic and hemodynamic evaluation of hepatic artery embolization in the rabbit.Invest Radiol 1978; 13: 306–312.
    Article PubMed CAS Google Scholar
  30. Wolf HJ, Bitman WR, Voelkel EF, Griffiths HJ, Tashjian AH. Systemic effects of the VX2 carcinoma on the osseous skeleton. A quantitative study of trabecular bone.Lab Invest 1978; 38: 208.
    Article Google Scholar
  31. Pillai KM, McKeever PE, Knutsen CA, Terrio PA, Prieskom DM, Ensminger WD. Microscopic analysis of arterial microsphere distribution in rabbit liver and hepatic VX2 tumor.Sel Cancer Ther 1991; 7: 39–48.
    PubMed CAS Google Scholar
  32. Hanai K, Tukagosi S, Muramatu S. Optimum techniques for helical and nonhelical CT.Gazou Shindan (Japanese Journal of Diagnostic Imaging) 2001; 21: 765–775. (in Japanese)
    Google Scholar
  33. Vaska P, Alexoff DL. Effects of natural LSO radioactivity on microPET quantitation. [abstract]J Nucl Med 2003; 44 (Suppl): p138.
    Google Scholar

Download references