Melanoma Differentiation Associated Gene-7 (mda-7): A Novel Anti-Tumor Gene for Cancer Gene Therapy (original) (raw)
References
Kozarsky K, Wilson J. (1993) Gene therapy. Adenovirus vectors. Curr. Opin. Gene Dev.3: 499–503. ArticleCAS Google Scholar
Swisher S, Roth J, Nemunaitis, Lawrence D, Kemp B, Carrasco C, Connors D, El-Naggar A, Fossella F, Glisson B, Hong W, Khuri F, Kurie J, Lee J, Lee J, Mack M, Merritt J, Nguyen D, Nesbitt J, Perez-Soler R, Pisters K, Putnam J Jr, Richli W, Savin M, Waugh M. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst.91: 763–771. ArticleCASPubMed Google Scholar
Jiang H, Fisher P. (1993) Use of a sensitive and efficient subtraction hybridization protocol for the identification of genes differentially expressed during growth, differentiation in human melanoma cells. Mol. Cell Different.1: 285–299. CAS Google Scholar
Jiang H, Lin J, Su Z, Goldstein N, Fisher P. (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene.11: 2477–2486. PubMedCAS Google Scholar
Jiang H, Su Z, Lin J, Goldstein N, Fisher, P. (1996) The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc. Natl. Acad. Sci.93: 9160–9165. ArticleCASPubMed Google Scholar
Su Z, Madireddi M, Lin J, Young C, Kitada S, Reed J, Goldstein N, Fisher P. (1998) The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc. Natl. Acad. Sci.95: 14400–14405. ArticleCASPubMed Google Scholar
Su Z, Madireddi M, Young C, Jiang H, Goldstein N, Fisher P. (2000) Melanoma differentiation associated gene-7 (Mda-7): a ubiquitous cancer growth suppressor gene. Cancer Gene Therapy (in press).
Madireddi M, Su Z, Young C, Goldstein N, Fisher P. (2000) Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Cancer Gene Therapy: Past Achievements and Future Challenges (in press).
Madireddi M, Su Z, Young C, Goldstein N, Fisher P. (2000) Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv. Exp. Med. Biol.465: 239–61. ArticleCASPubMed Google Scholar
Nielsen L, Maneval D. (1998) p53 tumor suppressor gene therapy for cancer. Cancer Gene Therapy.5: 52–63. PubMedCAS Google Scholar
Casey G, Lo-Hsueh M, Lopez M, Vogelstein B, Stanbridge E. (1991) Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene. Oncogene.6: 1761–1797. Google Scholar
Graham F, Prevec. (1992) Adenovirus-based expression vectors and recombinant vaccines. Biotechnology.20: 363–390. PubMedCAS Google Scholar
Jiang H, Lin J, Su Z, Collart F, Huberman E, Fisher P. (1994) Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene.9: 3397–3406. PubMedCAS Google Scholar
Jiang H, Lin J, Su Z, Kerbel R, Herlyn M, Weissman D, Welch D, Fisher P. (1995) The melanoma differentiation associated gene MDA-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene.10: 1855–1864. PubMedCAS Google Scholar
Schneider C, King R, Philipson L. (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell54: 787–793. ArticleCASPubMed Google Scholar
Fornace A Jr, Alamo I Jr. Hollander M. (1988) DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci.85: 8800–8804. ArticleCASPubMed Google Scholar
Abdollahi A, Lord K, Hoffman-Liebermann B, Liebermann D. (1991) Sequence and expression of cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines Oncogene.6: 165–167. PubMedCAS Google Scholar
Mooslehner K, Muller U, Karls U, Hamann L, Harbers K. (1991) Structure and expression of a gene encoding a putative GTP-binding protein identified by provirus integration in a transgenic mouse strain. Mol. Cell Biol.11: 886–893. ArticleCASPubMedPubMed Central Google Scholar
Del Sal G, Murphy M, Ruaro E, Lazarevic D, Levine A, Schneider C. (1995) Cyclin D1 and p21/waf1 are both involved in p53 growth suppression. Oncogene.12: 177–185. Google Scholar
Claudio P, Howard C, Baldi A, De Luca A, Fu Y, Condorelli G, Sun Y, Colburn N, Calabretta B, Giordano A. (1994) p130/pRb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRb and p107. Cancer Res.54: 5556–5565. PubMedCAS Google Scholar
Noda M, Kitayama H, Matsuzaki T, Sugimoto Y, Okayama H, Bassin R, Ikawa Y. (1988) Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc Natl. Acad. Sci.86: 162–166. Article Google Scholar
Kitayama H, Sugimoto Y, Masuzaki T, Ikawa Y, Noda M. (1989) A ras-related gene with transformation suppressor activity. Cell56: 77–84. ArticleCASPubMed Google Scholar
Reed J, Zha J, Aime-Sempe C, Takayama S, Wang, H. (1996) Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv. Exp. Med. Biol.406: 99–112. ArticleCASPubMed Google Scholar
Soo C, Shaw W, Freymiller E, Longaker M, Bertolami C, Chie R, Tieu A, Ting K. (1999) Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, MDA-7. J. Cell. Biochem.74: 1–10. ArticleCASPubMed Google Scholar
Zhang R, Tan Z, Liang P. (2000) Identification of a novel lig-and-receptor pair constitutively activated by ras oncogenes. J. Biol. Chem.11: 24436–24443. Article Google Scholar
Sedlak T, Oltvai Z, Yang E, Wang K, Boise L, Thompson C, Korysmeyer S. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci.92: 7834–7838. ArticleCASPubMed Google Scholar
Umekita Y, Hiipakka R, Liao S. (1997) Rat and human maspins: structures, metastatic suppressor activity and mutation in prostate cancer cells. Cancer Letter126: 87–93. Article Google Scholar
Mukherjee A, Kundu G. Mantile-Selvaggi G, Yuan C, Mandal A, Chattopadhyay S, Zheng F, Pattabiraman N, Zhang Z. (1999) Uteroglobin: a novel cytokine? Cell Mol. Life. Sci.55: 771–87. ArticleCASPubMed Google Scholar
Vajkoczy P, Menger M, Goldbrunner R, Ge S, Fong T, Vollmar B, Schilling L, Ullrich A, Hirth K, Tonn J, Schmiedek P, Rempel S. (2000) Int. J. Cancer.87: 261–268. ArticleCASPubMed Google Scholar
Melkonyan H, Chang W, Shapiro J, Mahadevappa M, Fitzpatrick P, Kiefer M, Tomei L, Umansky S. (1997) SARPs: a family of secreted apoptosis-related proteins. Proc. Natl. Acad. Sci. 94:13636–13641. ArticleCASPubMed Google Scholar
Saeki T, Mhashilkar A, Roth J, Chada S, Ramesh R. (2000) Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Ther.7: 2051–2057. ArticleCASPubMed Google Scholar
Bieche I, Champeme M, Lidereau R. (1995) Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin. Cancer Res.1: 123–127. PubMedCAS Google Scholar
Gronwald J, Storkel S, Holtgreve-Grez H, Hadaczek P, Brinkschmidt C, Jauch A, Lubinski J, Cremer T. (1997) Comparison of DNA gains and losses in primary renal clear cell carcinomas and metastatic sites: importance of 1q and 3p copy number changes in metastatic events. Cancer Res.57: 481–487. PubMedCAS Google Scholar
Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Riechel M, Just K, Du Manoir S, Cremer T, Dietel M, Ried T. (1997) Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res.57:(12): 2331–2335. PubMedCAS Google Scholar
Sukamoto K, Yoshimoto M, Kasumi M, Akiyama F, Sakamoto G, Nakamura Y, Emi M. (1999) Frequent multiplication of chromosome 1q in non-invasive and papillotubular carcinoma of the breast. Cancer Letter.141: 21–27. Article Google Scholar
Gallagher G, Dickensheets H, Eskdale J, Izotova L, Mirochnitchenko O, Peat J, Vazquez N, Pestka S, Donnelly R, Kotenko S. (2000) Cloning, expression and initial characterization of interleukin 19 (IL-19), a novel hoomologue of human IL-10 (IL-10). Genes and Immunity1: 442–450. ArticleCASPubMed Google Scholar
Dumoutier L, Louahed J, Renauld J. (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol.164: 1814–9. ArticleCASPubMed Google Scholar
Knappe A, Hor S, Wittmann S, Fickenscher H. (2000) Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol.74: 3881–3887. ArticleCASPubMedPubMed Central Google Scholar