BAX Contributes to Apoptotic-Like Death Following Neonatal Hypoxia-Ischemia: Evidence for Distinct Apoptosis Pathways (original) (raw)
Oppenheim RW. (1991) Cell death during the development of the nervous system. Annu. Rev. Neurosci.14: 453–501. ArticleCASPubMed Google Scholar
Nijhawan D, Honarpour N, Wang XD. (2000) Apoptosis in neural development and disease. Ann. Rev. Neurosci.23: 73–87. ArticleCASPubMed Google Scholar
Ferrer I, Tortosa A, Macaya A, et al. (1994) Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Path.4: 115–122. ArticleCAS Google Scholar
Mehmet H, Yue X, Squier MV, et al. (1994) Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci. Lett.181: 121–125. ArticleCASPubMed Google Scholar
Hill IE, MacManus JP, Rasquinha I, Tuor UI. (1995) DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Res.676: 398–403. ArticleCASPubMed Google Scholar
Sidhu S, Tuor UI, Del Bigio MR. (1997) Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci. Lett.223: 129–132. ArticleCASPubMed Google Scholar
Silverstein FS, Barks JD, Hagan P, Liu XH, Ivacko J, Szaflarski J. (1997a) Cytokines and perinatal brain injury. Neurochem. Int.30: 375–383. ArticleCASPubMed Google Scholar
Pulera MR, Adams LM, Liu HT, et al. (1998) Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia. Stroke29: 2622–2629. ArticleCASPubMed Google Scholar
Cheng Y, Deshmukh M, D’Costa A, et al. (1998) Caspase inhibitor affords neuroprotection with delayed adminstration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest.101: 1992–1999. ArticleCASPubMedPubMed Central Google Scholar
Taylor DL, Edwards AD, Mehmet H. (1999) Oxidative metabolism, apoptosis and perinatal brain injury. Brain Path.9: 93–117. ArticleCAS Google Scholar
Holtzman DM, Deshmukh M. (1997) Caspases: A treatment target for neurodegenerative diseases? Nature Med.3: 954–955. ArticleCASPubMed Google Scholar
Chan SL, Mattson MP. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res.58: 167–190. ArticleCASPubMed Google Scholar
Gross A, McDonnell JM, Korsmeyer SJ. (1999) Blc-2 family members and the mitochondria in apoptosis. Genes and Development13: 1899–1911. ArticleCASPubMed Google Scholar
Oltvai ZN, Milliman CL, Korsmeyer SJ. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog bax, that accelerates programed cell death. Cell74: 609–619. ArticleCASPubMed Google Scholar
Sedlak TW, Oltvai ZN, Yang E, et al. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. USA92: 7834–7838. ArticleCASPubMed Google Scholar
Deckwerth TL, Elliott JL, Knudson CM, Johnson EMJ, Snider WD, Korsmeyer SJ. (1996) BAX is required for neuronal death after trophic deprivation and during development. Neuron17: 1–20. Article Google Scholar
Miller TM, Moulder KL, Knudson CM, et al. (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J. Cell Biol.139: 205–217. ArticleCASPubMedPubMed Central Google Scholar
White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD. (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci.18: 1428–1439. ArticleCASPubMed Google Scholar
Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N. (2000) Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J. Neurosci.20: 3687–3694. ArticleCASPubMed Google Scholar
Chong MJ, Murray MR, Gosink EC, et al. (2000) Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc. Natl. Acad. Sci. USA97: 889–894. ArticleCASPubMed Google Scholar
Vanucci RC. (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr. Res.27: 317–326. Article Google Scholar
Volpe JJ (1995) Neurology of the newborn (W. B. Saunders, Philadelphia). Google Scholar
Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM. (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp. Neurol.166: 99–114. ArticleCASPubMed Google Scholar
Rice JE, Vannucci RC, Brierley JB. (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol.9: 131–141. ArticlePubMed Google Scholar
Ikonomidou C, Mosinger JL, Salles KS, Labruyere J, Olney JW. (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J. Neurosci.9: 2809–2818. ArticleCASPubMed Google Scholar
Nakajima W, Ishida A, Lange MS, et al. (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci20: 7994–8004. ArticleCASPubMed Google Scholar
Han BH, DeMattos RB, Dugan LL, et al. (2001) Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nat Med7: 338–343. ArticleCASPubMed Google Scholar
Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD. (1998) Bcl-XL is an anti-apoptotic regulator for postnatal CNS neurons. J. Neurosci.18: 1009–1019. ArticleCASPubMed Google Scholar
Lendon CL, Han BH, Salimi K, et al. (2000) No effect of apolipoprotein E on neuronal cell death due to excitotoxic and apoptotic agents in vitro and neonatal hypoxic ischaemia in vivo. Eur. J. Neurosci.12: 2235–2242. ArticleCASPubMed Google Scholar
Ferriero DM, Holtzman DM, Black SM, Sheldon RA. (1996) Mice without neuronal nitric oxide synthase have less injury after perinatal hypoxia-ischemia. Neurobiol. Dis.3: 64–71. ArticleCASPubMed Google Scholar
Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ. (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science270: 96–98. ArticleCASPubMed Google Scholar
Johnston MV. (1983) Neurotransmitter alterations in a model of perinatal hypoxic-ischemic brain injury. Ann. Neurol.13: 511–518. ArticleCASPubMed Google Scholar
Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM. (1997) Marked age-dependent neuroprotection by BDNF against neonatal hypoxic-ischemic brain injury. Ann. Neurol.41: 521–529. ArticleCASPubMed Google Scholar
Franklin KBJ, Paxinos G (1997) The Mouse Brain in Stereotaxic Coordinates (Academic Press, Inc., San Diego). Google Scholar
Han BH, D’Costa A, Back SA, et al. (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol. Dis.7: 38–53. ArticleCASPubMed Google Scholar
Han BH, Holtzman DM. (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J. Neurosci.20: 5775–5781. ArticleCASPubMed Google Scholar
Srinivasan A, Roth KA, Sayers RO, et al. (1998) In Situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death & Diff.5: 1004–1016. ArticleCAS Google Scholar
Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci.19: 5932–5941. ArticleCASPubMed Google Scholar
Holtzman DM, Bayney RM, Li Y, et al. (1992) Dysregulation of gene expression in mouse trisomy 16, an animal model of Down syndrome. EMBO J.11: 619–627. ArticlePubMedPubMed CentralCAS Google Scholar
Selznick LA, Holtzman DM, Han BH, et al. (1999) In Situ Immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropath. Exp. Neurol.58: 1020–1026. ArticleCASPubMed Google Scholar
Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. (2001) Early neurodegeneration after hypoxiaischemia in neonatal rat is necrosis while delayed neuronal death is apoptotis. Neurobiol. Dis.8: 207–219. ArticleCASPubMed Google Scholar
Northington FJ, Ferriero DM, Flock DL, Martin LJ. (2001) Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J. Neurosci.21: 1931–1938. ArticleCASPubMed Google Scholar
Han BH, D’Costa A, Back SA, et al. (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol. Dis.7: 38–53. ArticleCASPubMed Google Scholar
Deshmukh M, Johnson EM. (1998) Evidence of a novel event during neuronal death—development of competence-to-die in response to cytoplasmic cytochrome C. Neuron21: 695–705. ArticleCASPubMed Google Scholar
Putcha GV, Deshmukh M, Johnson J. E. M. (1999) Bax translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, bcl-2, and caspases. J. Neurosci.19: 7476–7485. ArticleCASPubMed Google Scholar
Srinivasula SM, Ahmad M, Fernadnes-Alnemri T, Litwack G, Alnemri ES. (1996) Molecular ordering of the Fas-apoptotic pathway: The fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. USA93: 14486–14491. ArticleCASPubMed Google Scholar
Muzio M, Chinnaiyan AM, Kischkel FC, et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas-APO-1) death-inducing signaling complex. Cell85: 817–827. ArticleCASPubMed Google Scholar
Stennicke HR, Jurgensmeier JM, Shin H, et al. (1998) Procaspase-3 is a major physiological target of caspase-8. J. Biol. Chem.273: 27084–27090. ArticleCASPubMed Google Scholar
Felderhoff-Mueser U, Taylor DL, Greenwood K, et al. (2000) Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol.10: 17–29. ArticleCASPubMed Google Scholar
Martinou J-C, Dubois-Dauphin M, Staple JK, et al. (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron13: 1017–1030. ArticleCASPubMed Google Scholar
Chen J, Graham SH, Nakayama M, et al. (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J. Cerebral Blood Flow Metab.17: 2–10. ArticleCAS Google Scholar
Minami M, Jin KL, Li W, Nagayama T, Henshall DC, Simon RP. (2000) Bcl-w expression is increased in brain regions affected by focal cerebral ischemia in the rat. Neurosci. Lett.279: 193–195. ArticleCASPubMed Google Scholar
Yan C, Chen J, Chen D, et al. (2000) Overexpression of the cell death suppressor Bcl-w in ischemic brain: implications for a neuroprotective role via the mitochondrial pathway. J. Cerebral Blood Flow Metab.20: 620–630. ArticleCAS Google Scholar
Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC. (1995) Upregulation of Bax protein levels in neurons following cerebral ischemia. J. Neurosci.15: 6364–6376. ArticleCASPubMed Google Scholar
Hara A, Iwai T, Niwa M, et al. (1996) Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res.711: 249–253. ArticleCASPubMed Google Scholar
MacGibbon GA, Lawlor PA, Sirimanne ES, et al. (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res.750: 223–234. ArticleCASPubMed Google Scholar
Cao G, Minami M, Pei W, et al. (2001) Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J. Cereb. Blood Flow & Metab.21: 321–333. ArticleCAS Google Scholar
Kuida K, Zheng TS, Na SQ, et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature384: 368–372. ArticleCASPubMed Google Scholar
Hakem R, Hakem A, Duncan GS, et al. (1998) Differential requirement fo caspase 9 in apoptotic pathways in vivo. Cell94: 339–352. ArticleCASPubMed Google Scholar
Hara H, Firedlander RM, Gagliardini V, et al. (1997) Inhibition of interleukin 1_β_ converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA94: 2007–2012. ArticleCASPubMed Google Scholar
Chen J, Nagayama T, Jin K, et al. (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci.18: 4914–4928. ArticleCASPubMed Google Scholar
Rickman DW, Nacke RE, Rickman CB. (1999) Characterization of the cell death promoter, Bad, in the developing rat retina and forebrain. Brain Res.115: 41–47. ArticleCAS Google Scholar
Shimohama S, Fujimoto S, Sumida Y, Tanino H. (1998) Differential Expression of rat brain Bcl-2 family proteins in development and aging. Biochem. Biophys. Res. Comm.252: 92–96. ArticleCASPubMed Google Scholar
Han Z, Bhalla K, Pantazis P, Hendreickson EA, Wyche JH. (1999) Cif (cytochrome c effluxing-inducing factor) activity is regulates by Bcl-2 and caspases and correlates with the activation of Bid. Mol. Cell. Biol.19: 1381–1389. ArticleCASPubMedPubMed Central Google Scholar
Zhai D, Huang X, Han X, Yang F. (2000) Characterization of Bid-induced cytochrome c release from mitochondria and liposomes. FEBS Lett472: 293–296. ArticleCASPubMed Google Scholar
Luo X, Budihardjo I, Zou H, Slaughter C, Wang XD. (1998) BID, a BCL2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell94: 481–490. ArticleCASPubMed Google Scholar
Li HL, Zhu H, Xu CJ, Yuan JY. (1998) Cleavage of BID by caspase-8 mediates the mitochondrial damage in the FAS pathway of apoptosis. Cell94: 491–501. ArticleCASPubMed Google Scholar
Kuwana T, Smith JJ, Muzio M, Dixit, V., Newmeyer DD, Kornbluth S. (1998) Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem.273: 16589–16594. ArticleCASPubMed Google Scholar
Gross A, Yin XM, Wang K, et al. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-X-L prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem.274: 1156–1163. ArticleCASPubMed Google Scholar
Yin XM, Wang K, Gross A, et al. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature400: 886–891. ArticleCASPubMed Google Scholar
Boldin MP, Goncharov TM, Goltsev YV, Wallach D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell85: 803–815. ArticleCASPubMed Google Scholar
Medema JP, Scaffidi C, Kischkel FC, et al. (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J.16: 2794–2804. ArticleCASPubMedPubMed Central Google Scholar
Bertin J, Armstrong RC, Ottilie S, et al. (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl. Acad. Sci. USA94: 1172–1176. ArticleCASPubMed Google Scholar
Ashkenazi A, Dixit VM. (1998) Death receptors: signaling and modulation. Science281: 1305–1308. ArticleCASPubMed Google Scholar
Budihardjo I, Oliver H, Lutter M, Luo X, Wang XD. (1999) Biochemical pathways of caspase activation during apoptosis. Ann. Rev. Cell Devel. Biol.15: 269–290. ArticleCAS Google Scholar
Ruffolo SC, Breckenridge DG, Nguyen M, et al. (2000) BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death & Different.7: 1101–1108. ArticleCAS Google Scholar
Wei MC, Zong WX, Cheng EH, et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science292: 727–730. ArticleCASPubMedPubMed Central Google Scholar
Budd SL, Tenneti L, Lishnak T, Lipton SA. (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc. Natl. Acad. Sci. USA97: 6161–6166. ArticleCASPubMed Google Scholar