J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying models of new physics via WW scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
A.V. Manohar and V. Mateu, Dispersion relation bounds for ππ scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
B. Bellazzini, C. Cheung and G.N. Remmen, Quantum gravity constraints from unitarity and analyticity, Phys. Rev. D93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for particles with Spin, JHEP03 (2018) 011 [arXiv:1706.02712] [INSPIRE].
B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond positivity bounds and the fate of massive gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE]. ArticleADS Google Scholar
C. de Rham, S. Melville and A.J. Tolley, Improved positivity bounds and massive gravity, JHEP04 (2018) 083 [arXiv:1710.09611] [INSPIRE].
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for massive spin-1 and spin-2 fields, JHEP03 (2019) 182 [arXiv:1804.10624] [INSPIRE].
B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous Z Z and Z γ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].
R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP07 (2016) 144 [arXiv:1604.06444] [INSPIRE]. ArticleADS Google Scholar
A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP04 (2012) 073 [arXiv:1202.1532] [INSPIRE]. ArticleADS Google Scholar
L.J. Dixon, A brief introduction to modern amplitude methods, in the proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: Particle Physics: The Higgs Boson and Beyond , June 3–28, Boulder U.S.A. (2014), arXiv:1310.5353 [INSPIRE].
C. Cheung, TASI lectures on scattering amplitudes, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016), June 6–July 1, Boulder, U.S.A. (2018), arXiv:1708.03872 [INSPIRE].
N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering amplitudes for all masses and spins, arXiv:1709.04891 [INSPIRE].
W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
M.L. Goldberger, H. Miyazawa and R. Oehme, Application of dispersion relations to pion-nucleon scattering, Phys. Rev.99 (1955) 986 [INSPIRE]. ArticleADS Google Scholar
J. Hamilton and W.S. Woolcock, Determination of pion-nucleon parameters and phase shifts by dispersion relations, Rev. Mod. Phys.35 (1963) 737 [INSPIRE]. ArticleADS Google Scholar
M. Luo, Y. Wang and G. Zhu, Unitarity constraints on effective interaction in πN scattering, Phys. Lett. B649 (2007) 162 [hep-ph/0611325] [INSPIRE].
J.J. Sanz-Cillero, D.-L. Yao and H.-Q. Zheng, Positivity constraints on the low-energy constants of the chiral pion-nucleon Lagrangian, Eur. Phys. J. C74 (2014) 2763 [arXiv:1312.0664] [INSPIRE]. ArticleADS Google Scholar
A. Adams, A. Jenkins and D. O’Connell, Signs of analyticity in fermion scattering, arXiv:0802.4081 [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part I. Formalism and lambda dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part II. Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part III. gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE]. ArticleADS Google Scholar
J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE]. ArticleADS Google Scholar
C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett.115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
Z. Bern, J. Parra-Martinez and E. Sawyer, Nonrenormalization and operator mixing via on-shell methods, Phys. Rev. Lett.124 (2020) 051601 [arXiv:1910.05831] [INSPIRE].
M. Jiang, J. Shu, M.-L. Xiao and Y.-H. Zheng, Partial wave amplitude basis and selection rules in effective field theories, Phys. Rev. Lett.126 (2021) 011601 [arXiv:2001.04481] [INSPIRE].
K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B641 (2006) 62 [hep-ph/0605341] [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D46 (1992) 381 [INSPIRE]. ArticleADS Google Scholar
M. Aoki and S. Kanemura, Unitarity bounds in the Higgs model including triplet fields with custodial symmetry, Phys. Rev. D77 (2008) 095009 [Erratum ibid.89 (2014) 059902] [arXiv:0712.4053] [INSPIRE].
J. De Blas, G. Durieux, C. Grojean, J. Gu and A. Paul, On the future of Higgs, electroweak and diboson measurements at lepton colliders, JHEP12 (2019) 117 [arXiv:1907.04311] [INSPIRE].