The measurement of the Higgs self-coupling at the LHC: theoretical status (original) (raw)

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. 716 (2012) 1
    Google Scholar
  2. ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).
  3. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. 716 (2012) 30.
    Google Scholar
  4. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  5. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].
    ADS Google Scholar
  6. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].
    MathSciNet ADS Google Scholar
  7. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].
    MathSciNet ADS Google Scholar
  8. G. Guralnik, C. Hagen and T. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].
    ADS Google Scholar
  9. S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].
    ADS Google Scholar
  10. F. Boudjema and E. Chopin, Double Higgs production at the linear colliders and the probing of the Higgs selfcoupling, Z. Phys. C 73 (1996) 85 [hep-ph/9507396] [INSPIRE].
    Google Scholar
  11. A. Djouadi, W. Kilian, M. Mühlleitner and P. Zerwas, Testing Higgs selfcouplings at e + elinear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].
    ADS Google Scholar
  12. V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].
    ADS Google Scholar
  13. P. Osland and P. Pandita, Measuring the trilinear couplings of MSSM neutral Higgs bosons at high-energy e + ecolliders, Phys. Rev. D 59 (1999) 055013 [hep-ph/9806351] [INSPIRE].
    ADS Google Scholar
  14. E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev. D 82 (2010) 115002 [arXiv:1009.4670] [INSPIRE].
    ADS Google Scholar
  15. A. Djouadi, W. Kilian, M. Mühlleitner and P. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].
    ADS Google Scholar
  16. A. Djouadi, W. Kilian, M. Mühlleitner and P. Zerwas, The Reconstruction of trilinear Higgs couplings, hep-ph/0001169 [INSPIRE].
  17. M.M. Mühlleitner, Higgs particles in the standard model and supersymmetric theories, hep-ph/0008127 [INSPIRE].
  18. R. Gröber and M. Mühlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].
    ADS Google Scholar
  19. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].
    ADS MATH Google Scholar
  20. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
    ADS Google Scholar
  21. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
    ADS Google Scholar
  22. M. Gomez-Bock et al., Rompimiento de la simetria electrodebil y la fisica del Higgs: Conceptos basicos, J. Phys. Conf. Ser. 18 (2005) 74 [hep-ph/0509077] [INSPIRE].
    ADS Google Scholar
  23. M. Gomez-Bock, M. Mondragon, M. Mühlleitner, M. Spira and P. Zerwas, Concepts of Electroweak Symmetry Breaking and Higgs Physics, arXiv:0712.2419 [INSPIRE].
  24. O.J. Eboli, G. Marques, S. Novaes and A. Natale, Twin Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].
    ADS Google Scholar
  25. E.N. Glover and J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].
    ADS Google Scholar
  26. D.A. Dicus, C. Kao and S.S. Willenbrock, Higgs boson pair production from gluon fusion, Phys. Lett. B 203 (1988) 457 [INSPIRE].
    ADS Google Scholar
  27. T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
    ADS Google Scholar
  28. W.-Y. Keung, Double Higgs from W - W fusion, Mod. Phys. Lett. A 2 (1987) 765 [INSPIRE].
    ADS Google Scholar
  29. D.A. Dicus, K.J. Kallianpur and S.S. Willenbrock, Higgs boson pair production in the effective W approximation, Phys. Lett. B 200 (1988) 187 [INSPIRE].
    ADS Google Scholar
  30. K.J. Kallianpur, Pair production of Higgs bosons via heavy quark annihilation, Phys. Lett. B 215 (1988) 392 [INSPIRE].
    ADS Google Scholar
  31. A. Dobrovolskaya and V. Novikov, On heavy Higgs boson production, Z. Phys. C 52 (1991) 427 [INSPIRE].
    ADS Google Scholar
  32. A. Abbasabadi, W. Repko, D.A. Dicus and R. Vega, Comparison of exact and effective gauge boson calculations for gauge boson fusion processes, Phys. Rev. D 38 (1988) 2770 [INSPIRE].
    ADS Google Scholar
  33. V.D. Barger, T. Han and R. Phillips, Double Higgs boson bremsstrahlung from W and Z bosons at supercolliders, Phys. Rev. D 38 (1988) 2766 [INSPIRE].
    ADS Google Scholar
  34. M. Moretti, S. Moretti, F. Piccinini, R. Pittau and A. Polosa, Higgs boson self-couplings at the LHC as a probe of extended Higgs sectors, JHEP 02 (2005) 024 [hep-ph/0410334] [INSPIRE].
    ADS Google Scholar
  35. G. Cynolter, E. Lendvai and G. Pocsik, Resonance production of three neutral supersymmetric Higgs bosons at LHC, Acta Phys. Polon. B 31 (2000) 1749 [hep-ph/0003008] [INSPIRE].
    ADS Google Scholar
  36. T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
    ADS Google Scholar
  37. T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].
    ADS Google Scholar
  38. E. Todesco and F. Zimmermann, Proceedings of EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider, Malta, Republic of Malta, 14–16 October 2010 [arXiv:1111.7188] [INSPIRE].
  39. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
    ADS Google Scholar
  40. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].
    ADS Google Scholar
  41. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].
    ADS Google Scholar
  42. D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].
    ADS Google Scholar
  43. R.P. Kauffman and W. Schaffer, QCD corrections to production of Higgs pseudoscalars, Phys. Rev. D 49 (1994) 551 [hep-ph/9305279] [INSPIRE].
    ADS Google Scholar
  44. S. Dawson and R. Kauffman, QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit, Phys. Rev. D 49 (1994) 2298 [hep-ph/9310281] [INSPIRE].
    ADS Google Scholar
  45. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
    ADS Google Scholar
  46. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].
    ADS Google Scholar
  47. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
    ADS Google Scholar
  48. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
    ADS Google Scholar
  49. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
    ADS Google Scholar
  50. T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in p p collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [INSPIRE].
    ADS Google Scholar
  51. T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [INSPIRE].
    ADS Google Scholar
  52. E.L. Berger and J.M. Campbell, Higgs boson production in weak boson fusion at next-to-leading order, Phys. Rev. D 70 (2004) 073011 [hep-ph/0403194] [INSPIRE].
    ADS Google Scholar
  53. P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].
    ADS Google Scholar
  54. R.V. Harlander, J. Vollinga and M.M. Weber, Gluon-Induced Weak Boson Fusion, Phys. Rev. D 77 (2008) 053010 [arXiv:0801.3355] [INSPIRE].
    ADS Google Scholar
  55. G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461.
    ADS Google Scholar
  56. J. Kubar-André and F.E. Paige, Gluon Corrections to the Drell-Yan Model, Phys. Rev. D 19 (1979) 221 [INSPIRE].
    ADS Google Scholar
  57. T. Han and S. Willenbrock, QCD correction to the ppW H and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].
    ADS Google Scholar
  58. R. Hamberg, W. van Neerven and T. Matsuura, A Complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002)403-404] [INSPIRE].
    ADS Google Scholar
  59. O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].
    ADS Google Scholar
  60. B.A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions, Phys. Rev. D 42 (1990) 2253 [INSPIRE].
    ADS Google Scholar
  61. D.A. Dicus and C. Kao, Higgs-boson-Z 0 production from gluon fusion, Phys. Rev. D 38 (1988) 1008 [Erratum ibid. D 42 (1990) 2412] [INSPIRE].
    ADS Google Scholar
  62. O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-Quark Mediated Effects in Hadronic Higgs-Strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].
    ADS Google Scholar
  63. W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].
    ADS Google Scholar
  64. W. Beenakker et al., NLO QCD corrections to \( t\overline{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].
    ADS Google Scholar
  65. L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}H \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].
    ADS Google Scholar
  66. S. Dawson, L. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].
    ADS Google Scholar
  67. A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [INSPIRE].
    ADS Google Scholar
  68. A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections to Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330] [INSPIRE].
    ADS Google Scholar
  69. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].
    ADS Google Scholar
  70. G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].
    ADS Google Scholar
  71. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].
    ADS Google Scholar
  72. M. Ciccolini, A. Denner and S. Dittmaier, Strong and electroweak corrections to the production of Higgs + 2jets via weak interactions at the LHC, Phys. Rev. Lett. 99 (2007) 161803 [arXiv:0707.0381] [INSPIRE].
    ADS Google Scholar
  73. M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].
    ADS Google Scholar
  74. T. Figy, S. Palmer and G. Weiglein, Higgs Production via Weak Boson Fusion in the Standard Model and the MSSM, JHEP 02 (2012) 105 [arXiv:1012.4789] [INSPIRE].
    ADS Google Scholar
  75. M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].
    ADS Google Scholar
  76. A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].
    ADS Google Scholar
  77. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  78. M. Gillioz, R. Gröber, C. Grojean, M. Mühlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].
    ADS Google Scholar
  79. S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].
    ADS Google Scholar
  80. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].
    ADS Google Scholar
  81. U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].
    ADS Google Scholar
  82. U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE].
    ADS Google Scholar
  83. U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].
    ADS Google Scholar
  84. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
    ADS Google Scholar
  85. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].
    ADS Google Scholar
  86. A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W^{+}}{W^{-}} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].
    ADS Google Scholar
  87. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].
    ADS Google Scholar
  88. ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS (Update), ATL-PHYS-PUB-2012-004 (2012).
  89. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56.
    ADS MATH Google Scholar
  90. A. Djouadi, M. Mühlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007)635 [hep-ph/0609292] [INSPIRE].
    ADS Google Scholar
  91. See Michael Spira’s website: http://mspira.home.cern.ch/mspira/proglist.html.
  92. K. Arnold et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].
    ADS Google Scholar
  93. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].
    ADS Google Scholar
  94. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
    Google Scholar
  95. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
    Google Scholar
  96. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].
    ADS Google Scholar
  97. D. de Florian and M. Grazzini, Higgs production through gluon fusion: Updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [INSPIRE].
    ADS Google Scholar
  98. D. de Florian and M. Grazzini, Higgs production at the LHC: updated cross sections at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 718 (2012) 117 [arXiv:1206.4133][INSPIRE].
    ADS Google Scholar
  99. C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].
    ADS Google Scholar
  100. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503–504] [hep-ph/9605323] [INSPIRE].
    ADS Google Scholar
  101. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].
    ADS Google Scholar
  102. T. Figy, Next-to-leading order QCD corrections to light Higgs Pair production via vector boson fusion, Mod. Phys. Lett. A 23 (2008) 1961 [arXiv:0806.2200] [INSPIRE].
    ADS Google Scholar
  103. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
    ADS MATH Google Scholar
  104. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
    ADS Google Scholar
  105. T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006) 236 [hep-ph/0601248] [INSPIRE].
    ADS Google Scholar
  106. T. Hahn, A Mathematica interface for FormCalc-generated code, Comput. Phys. Commun. 178 (2008) 217 [hep-ph/0611273] [INSPIRE].
    ADS Google Scholar
  107. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
    ADS Google Scholar
  108. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
    ADS Google Scholar
  109. S. Alekhin, J. Blümlein and S. Moch, Parton Distribution Functions and Benchmark Cross Sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].
    ADS Google Scholar
  110. M. Gluck, P. Jimenez-Delgado, E. Reya and C. Schuck, On the role of heavy flavor parton distributions at high energy colliders, Phys. Lett. B 664 (2008) 133 [arXiv:0801.3618] [INSPIRE].
    ADS Google Scholar
  111. H1 and ZEUS collaborations, V. Radescu, HERA Precision Measurements and Impact for LHC Predictions, arXiv:1107.4193 [INSPIRE].
  112. NNPDF collaboration, A. Guffanti, NNPDF2.1: Including heavy quark mass effects in NNPDF fits, AIP Conf. Proc. 1369 (2011) 21.
    ADS Google Scholar
  113. A. Martin, W. Stirling, R. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [INSPIRE].
    ADS Google Scholar
  114. The NNPDF collaboration, R.D. Ball et al., Theoretical issues in PDF determination and associated uncertainties, arXiv:1303.1189 [INSPIRE].
  115. J. Baglio and A. Djouadi, Predictions for Higgs production at the Tevatron and the associated uncertainties, JHEP 10 (2010) 064 [arXiv:1003.4266] [INSPIRE].
    ADS Google Scholar
  116. R. Lafaye, D.J.. Miller, M. Mühlleitner and S. Moretti, Double Higgs production at TeV colliders in the minimal supersymmetric standard model, hep-ph/0002238 [INSPIRE].
  117. M. El-Kacimi and R. Lafaye, Simulation of neutral Higgs pairs production processes in PYTHIA using HPAIR matrix elements, ATL-PHYS-2002-015 (2002).
  118. A. Blondel, A. Clark and F. Mazzucato, Studies on the measurement of the SM Higgs self-couplings., ATL-PHYS-2002-029 (2002).
  119. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
    ADS Google Scholar
  120. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
    ADS Google Scholar
  121. M. Battaglia, E. Boos and W.-M. Yao, Studying the Higgs potential at the e+ e- linear collider, eConf C 010630 (2001) E3016.
    Google Scholar
  122. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  123. J.M. Campbell and R.K. Ellis, Radiative corrections to \( Zb\overline{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].
    ADS Google Scholar
  124. P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].
    ADS Google Scholar
  125. P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].
    ADS Google Scholar
  126. W. Beenakker, H. Kuijf, W. van Neerven and J. Smith, QCD Corrections to Heavy Quark Production in \( p\overline{p} \) Collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].
    ADS Google Scholar
  127. W. Beenakker, W. van Neerven, R. Meng, G. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].
    ADS Google Scholar
  128. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].
    ADS Google Scholar
  129. S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Top quark distributions in hadronic collisions, Phys. Lett. B 351 (1995) 555 [hep-ph/9503213] [INSPIRE].
    ADS Google Scholar
  130. M. Beneke et al., Top quark physics, hep-ph/0003033 [INSPIRE].
  131. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [INSPIRE].
    ADS Google Scholar
  132. N. Kidonakis and R. Vogt, The Theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [INSPIRE].
    ADS Google Scholar
  133. S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [INSPIRE].
    ADS Google Scholar
  134. S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].
    ADS Google Scholar
  135. M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].
    ADS Google Scholar
  136. P. Baernreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].
    ADS Google Scholar
  137. A. Elagin, P. Murat, A. Pranko and A. Safonov, A New Mass Reconstruction Technique for Resonances Decaying to di-tau, Nucl. Instrum. Meth. A 654 (2011) 481 [arXiv:1012.4686] [INSPIRE].
    ADS Google Scholar

Download references