Fingerprints of heavy scales in electroweak effective Lagrangians (original) (raw)
A. Pich, ICHEP 2014 summary: theory status after the first LHC run, Nucl. Part. Phys. Proc.273-275 (2016) 1 [arXiv:1505.01813] [INSPIRE]. Google Scholar
A. Pich, Effective field theory: course, in Les Houches Summer School of Theoretical Physics — Probing the Standard Model of Particle Interactions, R. Gupta et al. eds., Elsevier Science B.V., Amsterdam (1999), hep-ph/9806303 [INSPIRE].
W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO, Nucl. Phys.B 880 (2014) 552 [Erratum ibid.B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios, Phys. Rev.D 93 (2016) 055041 [arXiv:1510.03114] [INSPIRE]. ADS Google Scholar
G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys.B 321 (1989) 311 [INSPIRE]. ArticleADS Google Scholar
G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral lagrangians for massive spin 1 fields, Phys. Lett.B 223 (1989) 425 [INSPIRE]. ArticleADS Google Scholar
A. Pich, Colorless mesons in a polychromatic world, in Phenomenology of Large NCQCD, R.F. Lebed ed., World Scientific, Singapore (2002), hep-ph/0205030 [INSPIRE].
V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich and J. Portolés, Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys.B 753 (2006) 139 [hep-ph/0603205] [INSPIRE].
V. Cirigliano, G. Ecker, M. Eidemüller, A. Pich and J. Portolés, The < V AP > Green function in the resonance region, Phys. Lett.B 596 (2004) 96 [hep-ph/0404004] [INSPIRE].
V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich and J. Portolés, The < SPP > Green function and SU(3) breaking in K(_l_3) decays, JHEP04 (2005) 006 [hep-ph/0503108] [INSPIRE].
P.D. Ruiz-Femenía, A. Pich and J. Portolés, Odd intrinsic parity processes within the resonance effective theory of QCD, JHEP07 (2003) 003 [hep-ph/0306157] [INSPIRE].
I. Rosell, J.J. Sanz-Cillero and A. Pich, Quantum loops in the resonance chiral theory: the vector form-factor, JHEP08 (2004) 042 [hep-ph/0407240] [INSPIRE].
I. Rosell, J.J. Sanz-Cillero and A. Pich, Towards a determination of the chiral couplings at NLO in 1_/N_ C: L _r_8 (μ) and C _r_38 (μ), JHEP01 (2007) 039 [hep-ph/0610290] [INSPIRE].
A. Pich, I. Rosell and J.J. Sanz-Cillero, Form-factors and current correlators: chiral couplings Lr_10 (μ) and Cr_87 (μ) at NLO in 1/NC , JHEP07 (2008) 014 [arXiv:0803.1567] [INSPIRE]. ArticleADS Google Scholar
A. Pich, I. Rosell and J.J. Sanz-Cillero, The vector form factor at the next-to-leading order in 1_/N_ C: chiral couplings L 9(μ) and C 88(μ) − C 90(μ), JHEP02 (2011) 109 [arXiv:1011.5771] [INSPIRE]. ArticleADSMATH Google Scholar
J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys.B 250 (1985) 465 [INSPIRE]. ArticleADS Google Scholar
J. Gasser and H. Leutwyler, Low-energy expansion of meson form-factors, Nucl. Phys.B 250 (1985) 517 [INSPIRE]. ArticleADS Google Scholar
J. Gasser and H. Leutwyler, η → 3_π to one loop_, Nucl. Phys.B 250 (1985) 539 [INSPIRE].
J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral lagrangian of order p 6, JHEP02 (1999) 020 [hep-ph/9902437] [INSPIRE].
J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Annals Phys.280 (2000) 100 [hep-ph/9907333] [INSPIRE].
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev.177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev.177 (1969) 2247 [INSPIRE].
J. Bijnens and E. Pallante, On the tensor formulation of effective vector Lagrangians and duality transformations, Mod. Phys. Lett.A 11 (1996) 1069 [hep-ph/9510338] [INSPIRE].
K. Kampf, J. Novotny and J. Trnka, On different lagrangian formalisms for vector resonances within chiral perturbation theory, Eur. Phys. J.C 50 (2007) 385 [hep-ph/0608051] [INSPIRE].
T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev.D 22 (1980) 200 [INSPIRE]. ADS Google Scholar
P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin breaking in technicolor models, Nucl. Phys.B 173 (1980) 189 [INSPIRE]. ArticleADS Google Scholar
A.C. Longhitano, Heavy Higgs bosons in the Weinberg-Salam model, Phys. Rev.D 22 (1980) 1166 [INSPIRE]. ADS Google Scholar
A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys.B 188 (1981) 118 [INSPIRE]. ArticleADS Google Scholar
A. Pich, The Standard Model of Electroweak Interactions, in Proceedings of the 2010 European School on High-Energy Physics (Raseborg, Finland, 2010), C. Grojean and M. Spiropulu eds., CERN, Geneva, Switzerland (2012), arXiv:1201.0537 [INSPIRE].
A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett.110 (2013) 181801 [arXiv:1212.6769] [INSPIRE]. ArticleADS Google Scholar
A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs, JHEP01 (2014) 157 [arXiv:1310.3121] [INSPIRE]. ArticleADS Google Scholar
A. Pich, I. Rosell and J.J. Sanz-Cillero, One-loop calculation of the oblique S parameter in higgsless electroweak models, JHEP08 (2012) 106 [arXiv:1206.3454] [INSPIRE]. ArticleADS Google Scholar
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
J. Hirn and J. Stern, Lepton-number violation and right-handed neutrinos in Higgs-less effective theories, Phys. Rev.D 73 (2006) 056001 [hep-ph/0504277] [INSPIRE].
G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev.D 12 (1975) 1502 [INSPIRE]. ADS Google Scholar
T. Appelquist, M.J. Bowick, E. Cohler and A.I. Hauser, The breaking of isospin symmetry in theories with a dynamical Higgs mechanism, Phys. Rev.D 31 (1985) 1676 [INSPIRE]. ADS Google Scholar
E. Bagan, D. Espriu and J. Manzano, The effective electroweak chiral lagrangian: the matter sector, Phys. Rev.D 60 (1999) 114035 [hep-ph/9809237] [INSPIRE].
D. Espriu and J. Manzano, CP violation and family mixing in the effective electroweak Lagrangian, Phys. Rev.D 63 (2001) 073008 [hep-ph/0011036] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.B 234 (1984) 189 [INSPIRE]. ArticleADS Google Scholar
R. Urech, Virtual photons in chiral perturbation theory, Nucl. Phys.B 433 (1995) 234 [hep-ph/9405341] [INSPIRE].
G. Ecker, G. Isidori, G. Müller, H. Neufeld and A. Pich, Electromagnetism in nonleptonic weak interactions, Nucl. Phys.B 591 (2000) 419 [hep-ph/0006172] [INSPIRE].
F.-K. Guo, P. Ruiz-Femenía and J.J. Sanz-Cillero, One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson, Phys. Rev.D 92 (2015) 074005 [arXiv:1506.04204] [INSPIRE]. ADS Google Scholar
R. Alonso, E.E. Jenkins and A.V. Manohar, A geometric formulation of Higgs effective field theory: measuring the curvature of scalar field space, Phys. Lett.B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE]. ArticleADSMATH Google Scholar
D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev.D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE]. ADS Google Scholar
D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev.D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE]. ADS Google Scholar
D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev.D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE]. ADS Google Scholar
R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop WLWLand ZLZLscattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP02 (2014) 121 [arXiv:1311.5993] [INSPIRE]. ArticleADS Google Scholar
R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → W + LW − Land γγ → ZLZLfrom the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP07 (2014) 149 [arXiv:1404.2866] [INSPIRE]. ArticleADS Google Scholar
A. Filipuzzi, J. Portolés and P. Ruiz-Femenía, Zeros of the WLZL → WLZLamplitude: where vector resonances stand, JHEP08 (2012) 080 [arXiv:1205.4682] [INSPIRE].
M.B. Gavela, K. Kanshin, P.A.N. Machado and S. Saa, On the renormalization of the electroweak chiral Lagrangian with a Higgs, JHEP03 (2015) 043 [arXiv:1409.1571] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The effective chiral lagrangian for a light dynamical “Higgs Particle”, Phys. Lett.B 722 (2013) 330 [Erratum ibid.B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
M.J. Herrero and E. Ruiz Morales, The electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys.B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].
G. Buchalla, O. Catà, A. Celis and C. Krause, Standard model extended by a heavy singlet: linear vs. nonlinear EFT, Nucl. Phys.B 917 (2017) 209 [arXiv:1608.03564] [INSPIRE].
M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett.54 (1985) 1215 [INSPIRE]. ArticleADS Google Scholar
M. Harada and K. Yamawaki, Hidden local symmetry at one loop, Phys. Lett.B 297 (1992) 151 [hep-ph/9210208] [INSPIRE].
M. Harada and K. Yamawaki, Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition, Phys. Rept.381 (2003) 1 [hep-ph/0302103] [INSPIRE].
R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective weak interaction theory with possible new vector resonance from a strong Higgs sector, Phys. Lett.B 155 (1985) 95 [INSPIRE]. ArticleADS Google Scholar
R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Vector and axial vector bound states from a strongly interacting electroweak sector, Int. J. Mod. Phys.A 4 (1989) 1065 [INSPIRE]. ArticleADS Google Scholar
R. Casalbuoni et al., The extended BESS model: bounds from precision electroweak measurements, Nucl. Phys.B 409 (1993) 257 [hep-ph/9209290] [INSPIRE].
U.G. Meissner, Low-energy hadron physics from effective chiral lagrangians with vector mesons, Phys. Rept.161 (1988) 213 [INSPIRE]. ArticleADS Google Scholar
J. Brehmer, A. Freitas, D. López-Val and T. Plehn, Pushing Higgs effective theory to its limits, Phys. Rev.D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE]. ADS Google Scholar
J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP04 (2015) 078 [arXiv:1412.8480] [INSPIRE]. Article Google Scholar
F. del Águila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev.D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE]. ADS Google Scholar
F. del Águila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP09 (2000) 011 [hep-ph/0007316] [INSPIRE].
T. Corbett, O.J.P. Éboli and M.C. González-García, Inverse amplitude method for the perturbative electroweak symmetry breaking sector: the singlet Higgs portal as a study case, Phys. Rev.D 93 (2016) 015005 [arXiv:1509.01585] [INSPIRE].
S. Bar-Shalom, A. Soni and J. Wudka, Effective field theory analysis of Higgs naturalness, Phys. Rev.D 92 (2015) 015018 [arXiv:1405.2924] [INSPIRE]. ADS Google Scholar
J. Fuentes-Martín, J. Portolés and P. Ruiz-Femenía, Integrating out heavy particles with functional methods: a simplified framework, JHEP09 (2016) 156 [arXiv:1607.02142] [INSPIRE].
M.S. Bilenky and A. Santamaria, One loop effective Lagrangian for a standard model with a heavy charged scalar singlet, Nucl. Phys.B 420 (1994) 47 [hep-ph/9310302] [INSPIRE].
S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett.18 (1967) 507 [INSPIRE]. ArticleADS Google Scholar
C.W. Bernard, A. Duncan, J. LoSecco and S. Weinberg, Exact spectral function sum rules, Phys. Rev.D 12 (1975) 792 [INSPIRE]. ADS Google Scholar
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. ArticleADS Google Scholar
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. ADS Google Scholar
M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J.C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE]. ArticleADS Google Scholar
M. Baak et al., Working group report: precision study of electroweak interactions, arXiv:1310.6708 [INSPIRE].
T.N. Pham and T.N. Truong, Evaluation of the derivative quartic terms of the meson chiral lagrangian from forward dispersion relation, Phys. Rev.D 31 (1985) 3027 [INSPIRE]. ADS Google Scholar
J. Comellas, J.I. Latorre and J. Taron, Constraints on chiral perturbation theory parameters from QCD inequalities, Phys. Lett.B 360 (1995) 109 [hep-ph/9507258] [INSPIRE].
M.R. Pennington and J. Portolés, The Chiral Lagrangian parameters, l 1 , l 2 , are determined by the ρ resonance, Phys. Lett.B 344 (1995) 399 [hep-ph/9409426] [INSPIRE].
J. Bijnens, L. Girlanda and P. Talavera, The anomalous chiral Lagrangian of order p 6, Eur. Phys. J.C 23 (2002) 539 [hep-ph/0110400] [INSPIRE].
J.A. Schouten, Über die geometrische Deutung von gewöhnlichen p-Vektoren und W-p-Vektoren und den korrespondierenden Dichten, Proc. Kon. Ned. Akad. v. Wet.41 (1938) 709. MATH Google Scholar
J.A. Schouten, Tensor analysis for physicists, Oxford University Press, Oxford U.K. (1951). MATH Google Scholar