Strong double higgs production at the LHC (original) (raw)
D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev.D 7 (1973) 3111 [SPIRES]. ADS Google Scholar
C.H. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett.B 46 (1973) 233 [SPIRES]. ADS Google Scholar
J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett.30 (1973) 1268 [Erratum ibid.31 (1973) 572] [SPIRES]. ArticleADS Google Scholar
J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev.D 10 (1974) 1145 [Erratum ibid.D 11 (1975) 972] [SPIRES]. ADS Google Scholar
B.W. Lee, C. Quigg and H.B. Thacker, The strength of weak interactions at very high-energies and the higgs boson mass, Phys. Rev. Lett.38 (1977) 883 [SPIRES]. ArticleADS Google Scholar
B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the higgs boson mass, Phys. Rev.D 16 (1977) 1519 [SPIRES]. ADS Google Scholar
S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev.D 13 (1976) 974 [SPIRES]. ADS Google Scholar
L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev.D 20 (1979) 2619 [SPIRES]. ADS Google Scholar
D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett.B 136 (1984) 183 [SPIRES]. ADS Google Scholar
S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys.B 199 (1982) 206 [SPIRES]. ArticleADS Google Scholar
T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys.B 243 (1984) 125 [SPIRES]. ADS Google Scholar
D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett.B 136 (1984) 187 [SPIRES]. ADS Google Scholar
H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett.B 143 (1984) 152 [SPIRES]. ADS Google Scholar
H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett.B 145 (1984) 216 [SPIRES]. ADS Google Scholar
M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys.B 254 (1985) 299 [SPIRES]. ArticleADS Google Scholar
R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev.D 75 (2007) 055014 [hep-ph/0612048] [SPIRES]. ADS Google Scholar
R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev.D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES]. ADS Google Scholar
M.S. Chanowitz, M. Golden and H. Georgi, Universal scattering theorems for strongly interacting W's and Z's, Phys. Rev. Lett.57 (1986) 2344 [SPIRES]. ArticleADS Google Scholar
M.S. Chanowitz, M. Golden and H. Georgi, Low-energy theorems for strongly interacting W's And Z's, Phys. Rev.D 36 (1987) 1490 [SPIRES]. ADS Google Scholar
R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett.B 136 (1984) 196 [Erratum ibid.B 138 (1984) 464] [SPIRES]. ADS Google Scholar
M.S. Chanowitz and M.K. Gaillard, Multiple production of W and Z as a signal of new strong interactions, Phys. Lett.B 142 (1984) 85 [SPIRES]. ADS Google Scholar
G.L. Kane, W.W. Repko and W.B. Rolnick, The effective W ±, Z 0 approximation for high-energy collisions, Phys. Lett.B 148 (1984) 367 [SPIRES]. ADS Google Scholar
E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Isolating vector boson scattering at the LHC: Gauge cancellations and the equivalent vector boson approximation vs complete calculations, Phys. Rev.D 74 (2006) 073010 [hep-ph/0608019] [SPIRES]. ADS Google Scholar
Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys.B 296 (1988) 253 [SPIRES]. ArticleADS Google Scholar
J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: gold plated modes, Phys. Rev.D 52 (1995) 3878 [hep-ph/9504426] [SPIRES]. ADS Google Scholar
A. Ballestrero, G. Bevilacqua, D.B. Franzosi and E. Maina, How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?, JHEP11 (2009) 126 [arXiv:0909.3838] [SPIRES]. ArticleADS Google Scholar
A. Ballestrero, G. Bevilacqua and E. Maina, A complete parton level analysis of boson-boson scattering and electroweak symmetry breaking in lv+ four jets production at the LHC, JHEP05 (2009) 015 [arXiv:0812.5084] [SPIRES]. ArticleADS Google Scholar
N.Amapane et al., Study of VV-scattering processes as a probe of electroweak symmetry breaking, CMS note CERN-CMS-NOTE-2007-005.
E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Boson fusion and Higgs production at the LHC in six fermion final states with one charged lepton pair, Phys. Rev. D 75 (2007) 113006 [hep-ph/0603167] [SPIRES]. ADS Google Scholar
T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP03 (2010) 082 [arXiv:0911.3656] [SPIRES]. Article Google Scholar
E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys.B 309 (1988) 282 [SPIRES]. ArticleADS Google Scholar
V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, H + 2 jets via gluon fusion, Phys. Rev. Lett.87 (2001) 122001 [hep-ph/0105129] [SPIRES]. ArticleADS Google Scholar
V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon-fusion contributions to H + 2 jet production, Nucl. Phys.B 616 (2001) 367 [hep-ph/0108030] [SPIRES]. ArticleADS Google Scholar
M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [SPIRES]. ArticleADS Google Scholar
Y.L. Dokshitzer, S.I. Troian and V.A. Khoze, Collective QCD effects in the structure of final multi-hadron states. (In Russian), in proceedings of the 6th International Conference on Physics in Collisions, M. Derrick eds. (1986), World Scientific, Singapore (1987) pg. 365 Sov. J. Nucl. Phys.46 (1987) 712 [Yad. Fiz.46 (1987) 1220] [SPIRES].
Y.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Rapidity gaps in Higgs production, Phys. Lett.B 274 (1992) 116 [SPIRES]. ADS Google Scholar
J.D. Bjorken, A Full acceptance detector for SSC physics at low and intermediate mass scales: An Expression of interest to the SSC, Int. J. Mod. Phys.A 7 (1992) 4189 [SPIRES]. ADS Google Scholar
J.D. Bjorken, Rapidity gaps and jets as a new physics signature in very high-energy hadron hadron collisions, Phys. Rev.D 47 (1993) 101 [SPIRES]. ADS Google Scholar
J.D. Bjorken, Two gauge boson physics at very high-energies, SLAC-PUB-5823 (1992) [SPIRES].
R.S. Fletcher and T. Stelzer, Rapidity gap signals in Higgs production at the SSC, Phys. Rev.D 48 (1993) 5162 [hep-ph/9306253] [SPIRES]. ADS Google Scholar
F.E. Paige and S.D. Protopopescu, ISAJET 5.30: a Monte Carlo event generator for pp and ppbar interactions, in Physics of the SSC, R. Donaldson and J. Marx eds., Snowmass, Colorado (1986) pg. 320.
CMS collaboration, G.L. Bayatian et al., CMS physics: Technical design report, Volume I: Detector performance and software, February (2006), CERN-LHCC-2006-001 [SPIRES].
The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment - detector, trigger and physics, arXiv:0901.0512 [SPIRES].
Z. Sullivan and E.L. Berger, The missing heavy flavor backgrounds to Higgs boson production, Phys. Rev.D 74 (2006) 033008 [hep-ph/0606271] [SPIRES]. ADS Google Scholar
Z. Sullivan and E.L. Berger, Trilepton production at the CERN LHC: Standard model sources and beyond, Phys. Rev.D 78 (2008) 034030 [arXiv:0805.3720] [SPIRES]. ADS Google Scholar
E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, Drell-Yan production at the LHC in a four site Higgsless model, Phys. Rev.D 79 (2009) 055020 [arXiv:0807.5051] [SPIRES]. ADS Google Scholar
E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, The four site Higgsless model at the LHC, Nuovo Cim.123B (2008) 809 [arXiv:0807.2951] [SPIRES]. ADS Google Scholar
C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing strongly interacting vector boson systems at the CERN large hadron collider, Phys. Rev.D 80 (2009) 035027 [arXiv:0810.4861] [SPIRES]. ADS Google Scholar
R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev.D 78 (2008) 036012 [arXiv:0806.1624] [SPIRES]. ADS Google Scholar
K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev.D 80 (2009) 075007 [arXiv:0810.1497] [SPIRES]. ADS Google Scholar
K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB higgs models, arXiv:0911.0059 [SPIRES].
J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett.100 (2008) 242001 [arXiv:0802.2470] [SPIRES]. ArticleADS Google Scholar
T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP03 (2010) 082 [arXiv:0911.3656] [SPIRES]. Article Google Scholar
G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, arXiv:0912.4731 [SPIRES].