G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev.D 14 (1976) 3432 [Erratum ibid.D 18 (1978) 2199] [INSPIRE].
R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett.B 88 (1979) 123 [Erratum ibid.B 91 (1980) 487] [INSPIRE].
RD.. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE]. ArticleADS Google Scholar
O. Naviliat-Cuncic and R.G.E. Timmermans, Electric dipole moments: flavor-diagonal cp violation, Compt. Rend. Phys.13 (2012) 168. ArticleADS Google Scholar
CryoEDM collaboration, M. van der Grinten et al., CryoEDM: a cryogenic experiment to measure the neutron electric dipole moment, Nucl. Instrum. Meth.A 611 (2009) 129 [INSPIRE]. ADS Google Scholar
I. Altarev et al., Towards a new measurement of the neutron electric dipole moment, Nucl. Instrum. Meth.A 611 (2009) 133 [INSPIRE]. ADS Google Scholar
W. Griffith et al., Improved limit on the permanent electric dipole moment of Hg-199, Phys. Rev. Lett.102 (2009) 101601 [INSPIRE]. ArticleADS Google Scholar
Y.F. Orlov, W.M. Morse and Y.K. Semertzidis, Resonance method of electric-dipole-moment measurements in storage rings, Phys. Rev. Lett.96 (2006) 214802 [hep-ex/0605022] [INSPIRE]. ArticleADS Google Scholar
C.J.G. Onderwater, Search for EDMs using storage rings, J. Phys. Conf. Ser.295 (2011) 012008 [INSPIRE]. ArticleADS Google Scholar
Storage Ring EDM collaboration, Y.K. Semertzidis, A Storage Ring proton electric dipole moment experiment: most sensitive experiment to CP-violation beyond the Standard Model, arXiv:1110.3378 [INSPIRE].
C.J.G. Onderwater, Search for electric dipole moments at storage rings, arXiv:1204.2512 [INSPIRE].
J. Pretz, Measurement of permanent electric dipole moments of charged hadrons in storage rings, Hyperfine Interactions214 (2013), no. 1-3 111–117 [arXiv:1301.2937] [INSPIRE]. ArticleADS Google Scholar
W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett.63 (1989) 2333 [INSPIRE]. ArticleADS Google Scholar
A. De Rujula, M.B. Gavela, O. Pene and F.J. Vegas, Signets of CP-violation, Nucl. Phys.B 357 (1991) 311 [INSPIRE]. ArticleADS Google Scholar
F. Wilczek and A. Zee, Δ_I_ = 1_/_2 rule and right-handed currents: heavy quark expansion and limitation on Zweig_’_s rule, Phys. Rev.D 15 (1977) 2660 [INSPIRE]. ADS Google Scholar
E. Braaten, C.-S. Li and T.-C. Yuan, The evolution of Weinberg_’_s gluonic CP-violation operator, Phys. Rev. Lett.64 (1990) 1709 [INSPIRE]. ArticleADS Google Scholar
G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP11 (2005) 044 [hep-ph/0510137] [INSPIRE].
J. Hisano, K. Tsumura and M.J.S. Yang, QCD corrections to neutron electric dipole moment from dimension-six four-quark operators, Phys. Lett.B 713 (2012) 473 [arXiv:1205.2212] [INSPIRE]. ADS Google Scholar
O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev.D 70 (2004) 016003 [hep-ph/0402023] [INSPIRE]. ADS Google Scholar
J. de Vries, R.G.R. Timmermans, E. Mereghetti and U. van Kolck, The nucleon electric dipole form factor from dimension-six time-reversal violation, Phys. Lett.B 695 (2011) 268 [arXiv:1006.2304] [INSPIRE]. ADS Google Scholar
K. Ottnad, B. Kubis, U.-G. Meissner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett.B 687 (2010) 42 [arXiv:0911.3981] [INSPIRE]. ADS Google Scholar
E. Mereghetti, J. de Vries, W. Hockings, C. Maekawa and U. van Kolck, The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order, Phys. Lett.B 696 (2011) 97 [arXiv:1010.4078] [INSPIRE]. ADS Google Scholar
J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, Parity- and time-reversal-violating form factors of the deuteron, Phys. Rev. Lett.107 (2011) 091804 [arXiv:1102.4068] [INSPIRE]. ArticleADS Google Scholar
J. de Vries et al., Electric dipole moments of light nuclei from chiral effective field theory, Phys. Rev.C 84 (2011) 065501 [arXiv:1109.3604] [INSPIRE]. ADS Google Scholar
J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, The effective chiral lagrangian from dimension-six parity and time-reversal violation, arXiv:1212.0990 [INSPIRE].
A.V. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.B 234 (1984) 189 [INSPIRE]. ArticleADS Google Scholar
W. Fischler, S. Paban and S.D. Thomas, Bounds on microscopic physics from P and T violation in atoms and molecules, Phys. Lett.B 289 (1992) 373 [hep-ph/9205233] [INSPIRE]. ADS Google Scholar
J. Bsaisou et al., The electric dipole moment of the deuteron from the QCD θ-term, Eur. Phys. J.A 31 (2013) 49 [arXiv:1209.6306] [INSPIRE]. Google Scholar
C.-P. Liu and R. Timmermans, Time-reversal violation in threshold vector-n vector-p scattering, Phys. Lett.B 634 (2006) 488 [nucl-th/0602010] [INSPIRE]. ADS Google Scholar
Y.-H. Song, R. Lazauskas and V. Gudkov, Time reversal invariance violation in neutron deuteron scattering, Phys. Rev.C 83 (2011) 065503 [arXiv:1104.3051] [INSPIRE]. ADS Google Scholar
F. Berruto, T. Blum, K. Orginos and A. Soni, Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions, Phys. Rev.D 73 (2006) 054509 [hep-lat/0512004] [INSPIRE]. ADS Google Scholar
E. Shintani, S. Aoki and Y. Kuramashi, Full QCD calculation of neutron electric dipole moment with the external electric field method, Phys. Rev.D 78 (2008) 014503 [arXiv:0803.0797] [INSPIRE]. ADS Google Scholar
T. Bhattacharya, V. Cirigliano and R. Gupta, Neutron electric dipole moment from beyond the standard model, PoS(LATTICE 2012)179.
E. Shintani, Lattice calculation of neutron and proton EDM in full QCD, talk given at the 10th Quark Confinement and the Hadron Spectrum, October 8–12, Garching, Germany (2012).
E. Braaten, C.S. Li and T.C. Yuan, The gluon color-electric dipole moment and its anomalous dimension, Phys. Rev.D 42 (1990) 276 [INSPIRE]. ADS Google Scholar
J. Ng and S. Tulin, D versus d: CP-violation in β decay and electric dipole moments, Phys. Rev.D 85 (2012) 033001 [arXiv:1111.0649] [INSPIRE]. ADS Google Scholar
K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e − → W + W −, Nucl. Phys.B 282 (1987) 253 [INSPIRE]. ArticleADS Google Scholar
D.B. Kaplan and A. Manohar, Strange matrix elements in the proton from neutral current experiments, Nucl. Phys.B 310 (1988) 527 [INSPIRE]. ArticleADS Google Scholar
C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(_h_− > γγ), JHEP04 (2013) 016 [arXiv:1301.2588] [INSPIRE]. ArticleADS Google Scholar
S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett.65 (1990) 21 [Erratum ibid.65 (1990) 2920] [INSPIRE]. Google Scholar
D. Chang, X.-G. He, W.-Y. Keung, B. McKellar and D. Wyler, Neutron electric dipole moment due to Higgs exchange in left-right symmetric models, Phys. Rev.D 46 (1992) 3876 [hep-ph/9209284] [INSPIRE]. ADS Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev.D 86 (2012) 010001 [INSPIRE]. ADS Google Scholar
Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys.B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE]. ArticleADS Google Scholar
S. Weinberg, The quantum theory of fields, volume 2, Cambridge University Press, Cambridge U.K. (1996). Book Google Scholar
V. Bernard, N. Kaiser and U.G. Meissner, Chiral dynamics in nucleons and nuclei, Int. J. Mod. Phys.E 4 (1995) 193 [hep-ph/9501384] [INSPIRE]. ADS Google Scholar
E.E. Jenkins and A.V. Manohar, Baryon chiral perturbation theory using a heavy fermion Lagrangian, Phys. Lett.B 255 (1991) 558 [INSPIRE]. ADS Google Scholar
V. Bernard, N. Kaiser, J. Kambor and U.G. Meissner, Chiral structure of the nucleon, Nucl. Phys.B 388 (1992) 315 [INSPIRE]. ArticleADS Google Scholar
C. Dib et al., The neutron electric dipole form-factor in the perturbative chiral quark model, J. Phys.G 32 (2006) 547 [hep-ph/0601144] [INSPIRE]. ADS Google Scholar
M. Pospelov, Best values for the CP odd meson nucleon couplings from supersymmetry, Phys. Lett.B 530 (2002) 123 [hep-ph/0109044] [INSPIRE]. ADS Google Scholar
D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev.D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE]. ADS Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, arXiv:1305.0017 [INSPIRE].
F. Boudjema, K. Hagiwara, C. Hamzaoui and K. Numata, Anomalous moments of quarks and leptons from nonstandard W W gamma couplings, Phys. Rev.D 43 (1991) 2223 [INSPIRE]. ADS Google Scholar
D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev.D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE]. ADS Google Scholar
J. Fan and M. Reece, Probing charged matter through Higgs diphoton decay, γ ray lines and EDMs, arXiv:1301.2597 [INSPIRE].
DELPHI collaboration, J. Abdallah et al., Study of W boson polarisations and triple gauge boson couplings in the reaction e + e − → W + W − at LEP 2, Eur. Phys. J.C 54 (2008) 345 [arXiv:0801.1235] [INSPIRE]. ArticleADS Google Scholar
D0 collaboration, S. Abachi et al., Limits on anomalous WWγ couplings from \( p\overline{p}\to W\gamma +X \) events at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett.78 (1997) 3634 [hep-ex/9612002] [INSPIRE]. ArticleADS Google Scholar
J.J. Hudson et al., Improved measurement of the shape of the electron, Nature473 (2011) 493 [INSPIRE]. ArticleADS Google Scholar