Complete Higgs sector constraints on dimension-6 operators (original) (raw)

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
    ADS Google Scholar
  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
    ADS Google Scholar
  3. CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
    ADS Google Scholar
  4. ATLAS collaboration, Constraints on New Phenomena via Higgs Coupling Measurements with the ATLAS Detector, ATLAS-CONF-2014-010.
  5. M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig et al., Updated Status of the Global Electroweak Fit and Constraints on New Physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].
    ADS Google Scholar
  6. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].
    ADS Google Scholar
  7. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  8. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].
    ADS Google Scholar
  9. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].
    ADS Google Scholar
  10. T. Li, X. Wan, Y.-k. Wang and S.-h. Zhu, Constraints on the Universal Varying Yukawa Couplings: from SM-like to Fermiophobic, JHEP 09 (2012) 086 [arXiv:1203.5083] [INSPIRE].
    ADS Google Scholar
  11. M. Rauch, Determination of Higgs-boson couplings (SFitter), arXiv:1203.6826 [INSPIRE].
  12. J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].
    ADS Google Scholar
  13. A. Azatov, R. Contino, D. Del Re, J. Galloway, M. Grassi et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].
    ADS Google Scholar
  14. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].
    ADS Google Scholar
  15. L. Wang and X.-F. Han, The recent Higgs boson data and Higgs triplet model with vector-like quark, Phys. Rev. D 86 (2012) 095007 [arXiv:1206.1673] [INSPIRE].
    ADS MathSciNet Google Scholar
  16. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the 125 GeV Higgs, Nuovo Cim. C 035 (2012) 315 [arXiv:1206.4201] [INSPIRE].
    Google Scholar
  17. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].
    ADS Google Scholar
  18. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion, JHEP 12 (2012) 058 [arXiv:1206.5853] [INSPIRE].
    ADS Google Scholar
  19. S. Chang, C.A. Newby, N. Raj and C. Wanotayaroj, Revisiting Theories with Enhanced Higgs Couplings to Weak Gauge Bosons, Phys. Rev. D 86 (2012) 095015 [arXiv:1207.0493] [INSPIRE].
    ADS Google Scholar
  20. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].
    ADS Google Scholar
  21. J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].
    ADS Google Scholar
  22. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].
    ADS Google Scholar
  23. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].
    ADS Google Scholar
  24. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, _First Glimpses at Higgs_’ face, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].
    ADS Google Scholar
  25. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].
    ADS Google Scholar
  26. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].
    ADS Google Scholar
  27. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].
    ADS Google Scholar
  28. T. Plehn and M. Rauch, Higgs Couplings after the Discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].
    Google Scholar
  29. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].
    ADS Google Scholar
  30. B. Batell, S. Gori and L.-T. Wang, Higgs Couplings and Precision Electroweak Data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].
    ADS Google Scholar
  31. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].
    ADS Google Scholar
  32. G. Cacciapaglia, A. Deandrea, G.D. La Rochelle and J.-B. Flament, Higgs couplings beyond the Standard Model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].
    ADS Google Scholar
  33. E. Masso and V. Sanz, Limits on Anomalous Couplings of the Higgs to Electroweak Gauge Bosons from LEP and LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].
    ADS Google Scholar
  34. R.T. D’Agnolo, E. Kuflik and M. Zanetti, Fitting the Higgs to Natural SUSY, JHEP 03 (2013) 043 [arXiv:1212.1165] [INSPIRE].
    Google Scholar
  35. A. Azatov and J. Galloway, Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].
    ADS Google Scholar
  36. G. Bhattacharyya, D. Das and P.B. Pal, Modified Higgs couplings and unitarity violation, Phys. Rev. D 87 (2013) 011702 [arXiv:1212.4651] [INSPIRE].
    ADS Google Scholar
  37. D. Choudhury, R. Islam and A. Kundu, Anomalous Higgs Couplings as a Window to New Physics, Phys. Rev. D 88 (2013) 013014 [arXiv:1212.4652] [INSPIRE].
    ADS Google Scholar
  38. R.S. Gupta, M. Montull and F. Riva, SUSY Faces its Higgs Couplings, JHEP 04 (2013) 132 [arXiv:1212.5240] [INSPIRE].
    ADS MathSciNet Google Scholar
  39. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Higgs Couplings at the End of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].
    Google Scholar
  40. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs Precision (Higgcision) Era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].
    ADS Google Scholar
  41. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].
    ADS Google Scholar
  42. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].
    ADS Google Scholar
  43. J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].
    ADS Google Scholar
  44. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and LHC Higgs data : the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].
    ADS Google Scholar
  45. J. Ellis, V. Sanz and T. You, Prima Facie Evidence against Spin-Two Higgs Impostors, Phys. Lett. B 726 (2013) 244 [arXiv:1211.3068] [INSPIRE].
    ADS Google Scholar
  46. J. Ellis and D.S. Hwang, Does the ‘_Higgs_’ have Spin Zero?, JHEP 09 (2012) 071 [arXiv:1202.6660] [INSPIRE].
    ADS Google Scholar
  47. A. Alves, Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery, Phys. Rev. D 86 (2012) 113010 [arXiv:1209.1037] [INSPIRE].
    ADS Google Scholar
  48. J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, Distinguishing ‘_Higgs_’ spin hypotheses using γγ and WW * decays, Eur. Phys. J. C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE].
    ADS Google Scholar
  49. Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].
    ADS Google Scholar
  50. M.C. Kumar, P. Mathews, A.A. Pankov, N. Paver, V. Ravindran et al., Spin-analysis of s-channel diphoton resonances at the LHC, Phys. Rev. D 84 (2011) 115008 [arXiv:1108.3764] [INSPIRE].
    ADS Google Scholar
  51. S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
    ADS Google Scholar
  52. K. Odagiri, On azimuthal spin correlations in Higgs plus jet events at LHC, JHEP 03 (2003) 009 [hep-ph/0212215] [INSPIRE].
    ADS Google Scholar
  53. C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZ Zl(1) + l(1)- l(2) + l(2)- at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].
    ADS Google Scholar
  54. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
    ADS Google Scholar
  55. C.P. Buszello and P. Marquard, Determination of spin and CP of the Higgs boson from WBF, hep-ph/0603209 [INSPIRE].
  56. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HWW/ZZ4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].
    ADS Google Scholar
  57. P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner and S.D. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801 [arXiv:0707.2878] [INSPIRE].
    ADS Google Scholar
  58. R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].
    ADS Google Scholar
  59. K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].
    ADS Google Scholar
  60. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].
    ADS Google Scholar
  61. C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE].
    ADS Google Scholar
  62. U. De Sanctis, M. Fabbrichesi and A. Tonero, Telling the spin of the ‘_Higgs boson_’ at the LHC, Phys. Rev. D 84 (2011) 015013 [arXiv:1103.1973] [INSPIRE].
    ADS Google Scholar
  63. V. Barger and P. Huang, Higgs boson finder and mass estimator: The Higgs boson to WW to leptons decay channel at the LHC, Phys. Rev. D 84 (2011) 093001 [arXiv:1107.4131] [INSPIRE].
    ADS Google Scholar
  64. S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].
    ADS Google Scholar
  65. R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘_Higgs_’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  66. D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].
    ADS Google Scholar
  67. S.Y. Choi, M.M. Muhlleitner and P.M. Zerwas, Theoretical Basis of Higgs-Spin Analysis in Hγγ and Zγ Decays, Phys. Lett. B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE].
    ADS Google Scholar
  68. P. Avery, D. Bourilkov, M. Chen, T. Cheng, A. Drozdetskiy et al., Precision studies of the Higgs boson decay channel HZZ4l with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].
    ADS Google Scholar
  69. C.-Q. Geng, D. Huang, Y. Tang and Y.-L. Wu, Note on 125 GeV Spin-2 particle, Phys. Lett. B 719 (2013) 164 [arXiv:1210.5103] [INSPIRE].
    ADS Google Scholar
  70. A. Menon, T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125-126 GeV, Phys. Rev. D 89 (2014) 095021 [arXiv:1301.5404] [INSPIRE].
    ADS Google Scholar
  71. CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].
    ADS Google Scholar
  72. ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
    ADS Google Scholar
  73. D0 collaboration, Constraints on the J P = 2+ hypothesis for the 125 GeV boson in W/Z + \( b\overline{b} \) final states at the D0 Experiment, D0 Note 6387-CONF.
  74. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
    ADS Google Scholar
  75. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].
    ADS Google Scholar
  76. K. Hagiwara, R. Szalapski and D. Zeppenfeld, Anomalous Higgs boson production and decay, Phys. Lett. B 318 (1993) 155 [hep-ph/9308347] [INSPIRE].
    ADS Google Scholar
  77. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
    ADS Google Scholar
  78. M.B. Einhorn and J. Wudka, The Bases of Effective Field Theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].
    ADS MathSciNet Google Scholar
  79. S. Willenbrock and C. Zhang, Effective Field Theory Beyond the Standard Model, arXiv:1401.0470 [INSPIRE].
  80. F. Bonnet, M.B. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].
    ADS Google Scholar
  81. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].
    ADS Google Scholar
  82. W.-F. Chang, W.-P. Pan and F. Xu, Effective gauge-Higgs operators analysis of new physics associated with the Higgs boson, Phys. Rev. D 88 (2013) 033004 [arXiv:1303.7035] [INSPIRE].
    ADS Google Scholar
  83. A. Hayreter and G. Valencia, Constraints on anomalous color dipole operators from Higgs boson production at the LHC, Phys. Rev. D 88 (2013) 034033 [arXiv:1304.6976] [INSPIRE].
    ADS Google Scholar
  84. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
    ADS Google Scholar
  85. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].
    ADS Google Scholar
  86. E. Boos, V. Bunichev, M. Dubinin and Y. Kurihara, Higgs boson signal at complete tree level in the SM extension by dimension-six operators, Phys. Rev. D 89 (2014) 035001 [arXiv:1309.5410] [INSPIRE].
    ADS Google Scholar
  87. M. Dahiya, S. Dutta and R. Islam, Unitarizing VV Scattering in Light Higgs Scenarios, arXiv:1311.4523 [INSPIRE].
  88. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4_ℓ with Off-Shell Production and More_, arXiv:1403.4951 [INSPIRE].
  89. E. Masso and V. Sanz, Limits on Anomalous Couplings of the Higgs to Electroweak Gauge Bosons from LEP and LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].
    ADS Google Scholar
  90. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
    ADS Google Scholar
  91. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].
    ADS Google Scholar
  92. B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].
    ADS Google Scholar
  93. A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].
    Google Scholar
  94. S. Alam, S. Dawson and R. Szalapski, Low-energy constraints on new physics revisited, Phys. Rev. D 57 (1998) 1577 [hep-ph/9706542] [INSPIRE].
    ADS Google Scholar
  95. A. De Rujula, M.B. Gavela, P. Hernández and E. Masso, The Selfcouplings of vector bosons: Does LEP-1 obviate LEP-2?, Nucl. Phys. B 384 (1992) 3 [INSPIRE].
    ADS Google Scholar
  96. H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on Electroweak Effective Operators at One Loop, Phys. Rev. D 88 (2013) 015028 [arXiv:1306.3380] [INSPIRE].
    ADS Google Scholar
  97. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].
    ADS Google Scholar
  98. A. Falkowski, S. Fichet, K. Mohan, F. Riva and V. Sanz, Triple gauge couplings revisited, contribution to the Les Houches 2013 proceedings, to appear.
  99. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].
    ADS MathSciNet Google Scholar
  100. J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].
    ADS Google Scholar
  101. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
    ADS Google Scholar
  102. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
    ADS MathSciNet Google Scholar
  103. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
    ADS Google Scholar
  104. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
    ADS Google Scholar
  105. J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].
    ADS Google Scholar
  106. C.-Y. Chen, S. Dawson and C. Zhang, Electroweak Effective Operators and Higgs Physics, Phys. Rev. D 89 (2014) 015016 [arXiv:1311.3107] [INSPIRE].
    ADS Google Scholar
  107. H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on Electroweak Effective Operators at One Loop, Phys. Rev. D 88 (2013) 015028 [arXiv:1306.3380] [INSPIRE].
    ADS Google Scholar
  108. B. Henning, X. Lu and H. Murayama, What do precision Higgs measurements buy us?, arXiv:1404.1058 [INSPIRE].
  109. D0 collaboration, V.M. Abazov et al., Combined search for the standard model Higgs boson decaying to bb using the D0 Run II data set, Phys. Rev. Lett. 109 (2012) 121802 [arXiv:1207.6631] [INSPIRE].
    ADS Google Scholar
  110. ATLAS collaboration, Search for the bb decay of the Standard Model Higgs boson in associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079.
  111. J. Ellis, V. Sanz and T. You, Associated Production Evidence against Higgs Impostors and Anomalous Couplings, Eur. Phys. J. C 73 (2013) 2507 [arXiv:1303.0208] [INSPIRE].
    ADS Google Scholar
  112. G. Isidori and M. Trott, Higgs form factors in Associated Production, JHEP 02 (2014) 082 [arXiv:1307.4051] [INSPIRE].
    ADS Google Scholar
  113. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
    ADS Google Scholar
  114. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].
    ADS Google Scholar
  115. R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].
  116. R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].
    ADS Google Scholar
  117. A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].
    ADS Google Scholar
  118. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
    ADS Google Scholar
  119. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
    ADS Google Scholar
  120. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
    Google Scholar
  121. J. Ellis, D.S. Hwang, V. Sanz and T. You, A Fast Track towards the ‘_Higgs_’ Spin and Parity, JHEP 11 (2012) 134 [arXiv:1208.6002] [INSPIRE].
    ADS Google Scholar
  122. V. Sanz and C. Williams, in preparation.
  123. J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205 (2010) 10 [arXiv:1007.3492] [INSPIRE].
    ADS Google Scholar
  124. J.M. Campbell, \( W/ Z+ B,\kern0.62em \overline{B} \) / jets at NLO using the Monte Carlo MCFM, hep-ph/0105226 [INSPIRE].
  125. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].
    ADS Google Scholar
  126. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
    ADS MathSciNet Google Scholar
  127. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, eHDECAY: an Implementation of the Higgs Effective Lagrangian into HDECAY, arXiv:1403.3381 [INSPIRE].
  128. F. Boudjema, G. Cacciapaglia, K. Cranmer, G. Dissertori, A. Deandrea et al., On the presentation of the LHC Higgs Results, arXiv:1307.5865 [INSPIRE].
  129. ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].
    ADS Google Scholar
  130. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034.
  131. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.
  132. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  133. D0 collaboration, V.M. Abazov et al., Search for \( ZH\to {\ell}^{+}{\ell}^{-} b\overline{b} \) production in 9.7 fb −1 of \( p\overline{p} \) collisions with the D0 detector, Phys. Rev. D 88 (2013) 052010 [arXiv:1303.3276] [INSPIRE].
    ADS Google Scholar
  134. D0 collaboration, V.M. Abazov et al., Improved b quark jet identification at the D0 experiment, arXiv:1312.7623 [INSPIRE].
  135. D0 collaboration, V.M. Abazov et al., Search for the standard model Higgs boson in ℓν + jets final states in 9.7 fb −1 of \( p\overline{p} \) collisions with the D0 detector, Phys. Rev. D 88 (2013) 052008 [arXiv:1301.6122] [INSPIRE].
    ADS Google Scholar
  136. D0 collaboration, V.M. Abazov et al., Search for the standard model Higgs boson in the ZH → \( \nu \overline{\nu} b\overline{b} \) channel in 9.5 fb −1 of \( p\overline{p} \) collisions at \( \sqrt{s} \) =1_._96 TeV, Phys. Lett. B 716 (2012) 285 [arXiv:1207.5689] [INSPIRE].
    ADS Google Scholar
  137. A. Biekoetter, A. Knochel, M. Kraemer, D. Liu and F. Riva, Vices and Virtues of Higgs EFTs at Large Energy, arXiv:1406.7320 [INSPIRE].

Download references