Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson (original) (raw)
References
U. Amaldi et al., A comprehensive analysis of data pertaining to the weak neutral current and the intermediate vector boson masses, Phys. Rev.D 36 (1987) 1385 [INSPIRE]. ADS Google Scholar
G. Costa, J.R. Ellis, G.L. Fogli, D.V. Nanopoulos and F. Zwirner, Neutral currents within and beyond the standard model, Nucl. Phys.B 297 (1988) 244 [INSPIRE]. ADS Google Scholar
P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for Mt, ρ 0 , sin2 θWand grand unification, Phys. Rev.D 44 (1991) 817 [INSPIRE]. ADS Google Scholar
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. ADS Google Scholar
J. Erler and P. Langacker, Implications of high precision experiments and the CDF top quark candidates, Phys. Rev.D 52 (1995) 441 [hep-ph/9411203] [INSPIRE]. ADS Google Scholar
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.B 253 (1991) 161 [INSPIRE]. ADS Google Scholar
G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys.B 369 (1992) 3 [Erratum ibid.B 376 (1992) 444] [INSPIRE].
G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys.B 405 (1993) 3 [INSPIRE]. ADS Google Scholar
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE]. ADS Google Scholar
B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett.B 265 (1991) 326 [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. ADS Google Scholar
CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP06 (2013) 081 [arXiv:1303.4571] [INSPIRE]. ADS Google Scholar
A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \) and Rbusing numerical Mellin-Barnes integrals, JHEP08 (2012) 050 [Erratum ibid.1305 (2013) 074] [arXiv:1205.0299] [INSPIRE].
R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP05 (2010) 089 [arXiv:1002.1011] [INSPIRE]. ADS Google Scholar
A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP04 (2012) 127 [Erratum ibid.1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
D.Y. Bardin et al., ZFITTER v.6.21: a semianalytical program for fermion pair production in e + e − annihilation, Comput. Phys. Commun.133 (2001) 229 [hep-ph/9908433] [INSPIRE]. ADSMATH Google Scholar
D.Y. Bardin et al., ZFITTER: an analytical program for fermion pair production in e + e − annihilation, hep-ph/9412201 [INSPIRE].
A. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + e − annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun.174 (2006) 728 [hep-ph/0507146] [INSPIRE]. ADS Google Scholar
A. Akhundov, A. Arbuzov, S. Riemann and T. Riemann, ZFITTER 1985–2013, arXiv:1302.1395 [INSPIRE].
G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP11 (2011) 068 [arXiv:1104.1769] [INSPIRE]. ADS Google Scholar
M. Ciuchini et al., 2000 CKM triangle analysis: a critical review with updated experimental inputs and theoretical parameters, JHEP07 (2001) 013 [hep-ph/0012308] [INSPIRE]. ADS Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev.D 86 (2012) 010001 [INSPIRE]. ADS Google Scholar
H. Burkhardt and B. Pietrzyk, Recent BES measurements and the hadronic contribution to the QED vacuum polarization, Phys. Rev.D 84 (2011) 037502 [arXiv:1106.2991] [INSPIRE]. ADS Google Scholar
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(MZ ), Eur. Phys. J.C 71 (2011) 1515 [Erratum ibid.C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μand \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys.G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE]. ADS Google Scholar
F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim.C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE]. Google Scholar
CDF, D0 collaboration, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev.D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4_._9 fb −1 of data, ATLAS-CONF-2012-095 (2012).
S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett.B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE]. ADS Google Scholar
K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett.79 (1997) 2184 [hep-ph/9706430] [INSPIRE]. ADS Google Scholar
K. Chetyrkin, Quark mass anomalous dimension to \( O\left( {\alpha_S^4} \right) \), Phys. Lett.B 404 (1997) 161 [hep-ph/9703278] [INSPIRE]. ADS Google Scholar
K. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.133 (2000) 43 [hep-ph/0004189] [INSPIRE]. ADSMATH Google Scholar
A. Sirlin, Radiative corrections in the SU(2) L × U(1) theory: a simple renormalization framework, Phys. Rev.D 22 (1980) 971 [INSPIRE]. ADS Google Scholar
W. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2) L × U(1) theory, Phys. Rev.D 22 (1980) 2695 [Erratum ibid.D 31 (1985) 213] [INSPIRE].
D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1_/_2 fermion scattering. 1. The one loop diagrammar, Nucl. Phys.B 175 (1980) 435 [INSPIRE]. ADS Google Scholar
D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1_/_2 fermion scattering. 2. The one loop amplitudes, Nucl. Phys.B 197 (1982) 1 [INSPIRE]. ADS Google Scholar
M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev.D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE]. ADS Google Scholar
A. Djouadi and C. Verzegnassi, Virtual very heavy top effects in LEP/SLC precision measurements, Phys. Lett.B 195 (1987) 265 [INSPIRE]. ADS Google Scholar
A. Djouadi, O(ααs ) vacuum polarization functions of the standard model gauge bosons, Nuovo Cim.A 100 (1988) 357 [INSPIRE]. ADS Google Scholar
B.A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nucl. Phys.B 347 (1990) 86 [INSPIRE]. ADS Google Scholar
F. Halzen and B.A. Kniehl, Δ_r beyond one loop_, Nucl. Phys.B 353 (1991) 567 [INSPIRE]. ADS Google Scholar
B.A. Kniehl and A. Sirlin, Dispersion relations for vacuum polarization functions in electroweak physics, Nucl. Phys.B 371 (1992) 141 [INSPIRE]. ADS Google Scholar
B.A. Kniehl and A. Sirlin, On the effect of the \( t\overline{t} \) threshold on electroweak parameters, Phys. Rev.D 47 (1993) 883 [INSPIRE]. ADS Google Scholar
A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: complete QCD corrections, Phys. Rev.D 49 (1994) 3499 [Erratum ibid.D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].
L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, \( O\left( {\alpha \alpha_S^2} \right) \) correction to the electroweak ρ parameter, Phys. Lett.B 336 (1994) 560 [Erratum ibid.B 349 (1995) 597-598] [hep-ph/9406363] [INSPIRE].
K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Corrections of order \( \mathcal{O}\left( {{G_F}M_t^2\alpha_s^2} \right) \) to the ρ parameter, Phys. Lett.B 351 (1995) 331 [hep-ph/9502291] [INSPIRE]. ADS Google Scholar
K. Chetyrkin, J.H. Kuhn and M. Steinhauser, QCD corrections from top quark to relations between electroweak parameters to order \( \alpha_S^2 \), Phys. Rev. Lett.75 (1995) 3394 [hep-ph/9504413] [INSPIRE]. ADS Google Scholar
R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Radiative correction effects of a very heavy top, Phys. Lett.B 288 (1992) 95 [Erratum ibid.B 312 (1993) 511] [hep-ph/9205238] [INSPIRE].
R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Two loop heavy top effects in the standard model, Nucl. Phys.B 409 (1993) 105 [INSPIRE]. ADS Google Scholar
J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: a simple formula valid for arbitrary Higgs mass, Phys. Lett.B 319 (1993) 249 [INSPIRE]. ADS Google Scholar
J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop large top mass corrections to electroweak parameters: analytic results valid for arbitrary Higgs mass, Phys. Rev.D 51 (1995) 3820 [INSPIRE]. ADS Google Scholar
G. Degrassi, P. Gambino and A. Vicini, Two loop heavy top effects on the mZ-mWinterdependence, Phys. Lett.B 383 (1996) 219 [hep-ph/9603374] [INSPIRE]. ADS Google Scholar
G. Degrassi, P. Gambino and A. Sirlin, Precise calculation of MW, sin2 θW (M Z) and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \), Phys. Lett.B 394 (1997) 188 [hep-ph/9611363] [INSPIRE]. ADS Google Scholar
G. Degrassi and P. Gambino, Two loop heavy top corrections to the Z 0 boson partial widths, Nucl. Phys.B 567 (2000) 3 [hep-ph/9905472] [INSPIRE]. ADS Google Scholar
A. Freitas, W. Hollik, W. Walter and G. Weiglein, Complete fermionic two loop results for the MW-MZinterdependence, Phys. Lett.B 495 (2000) 338 [Erratum ibid.B 570 (2003) 260-264] [hep-ph/0007091] [INSPIRE].
A. Freitas, W. Hollik, W. Walter and G. Weiglein, Electroweak two loop corrections to the MW-MZmass correlation in the standard model, Nucl. Phys.B 632 (2002) 189 [Erratum ibid.B 666 (2003) 305-307] [hep-ph/0202131] [INSPIRE].
M. Awramik and M. Czakon, Complete two loop bosonic contributions to the muon lifetime in the standard model, Phys. Rev. Lett.89 (2002) 241801 [hep-ph/0208113] [INSPIRE]. ADS Google Scholar
A. Onishchenko and O. Veretin, Two loop bosonic electroweak corrections to the muon lifetime and MZ-MWinterdependence, Phys. Lett.B 551 (2003) 111 [hep-ph/0209010] [INSPIRE]. ADS Google Scholar
M. Awramik, M. Czakon, A. Onishchenko and O. Veretin, Bosonic corrections to Δ_r at the two loop level_, Phys. Rev.D 68 (2003) 053004 [hep-ph/0209084] [INSPIRE]. ADS Google Scholar
M. Awramik and M. Czakon, Two loop electroweak bosonic corrections to the muon decay lifetime, Nucl. Phys. Proc. Suppl.116 (2003) 238 [hep-ph/0211041] [INSPIRE]. ADS Google Scholar
M. Awramik and M. Czakon, Complete two loop electroweak contributions to the muon lifetime in the standard model, Phys. Lett.B 568 (2003) 48 [hep-ph/0305248] [INSPIRE]. ADS Google Scholar
J. van der Bij, K. Chetyrkin, M. Faisst, G. Jikia and T. Seidensticker, Three loop leading top mass contributions to the rho parameter, Phys. Lett.B 498 (2001) 156 [hep-ph/0011373] [INSPIRE]. ADS Google Scholar
M. Faisst, J.H. Kuhn, T. Seidensticker and O. Veretin, Three loop top quark contributions to the ρ parameter, Nucl. Phys.B 665 (2003) 649 [hep-ph/0302275] [INSPIRE]. ADS Google Scholar
G. Weiglein, Results for precision observables in the electroweak standard model at two loop order and beyond, Acta Phys. Polon.B 29 (1998) 2735 [hep-ph/9807222] [INSPIRE]. ADS Google Scholar
R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak correction to the Rho parameter in the large Higgs mass limit, Nucl. Phys.B 713 (2005) 278 [hep-ph/0410216] [INSPIRE]. ADS Google Scholar
R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak corrections to the W-boson mass and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) in the large Higgs mass limit, Nucl. Phys.B 725 (2005) 3 [hep-ph/0504092] [INSPIRE]. ADS Google Scholar
Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett.B 622 (2005) 124 [hep-ph/0504055] [INSPIRE]. ADS Google Scholar
K. Chetyrkin, M. Faisst, J.H. Kuhn, P. Maierhofer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett.97 (2006) 102003 [hep-ph/0605201] [INSPIRE]. ADS Google Scholar
R. Boughezal and M. Czakon, Single scale tadpoles and \( O\left( {{G_F}m_t^2\alpha_s^3} \right) \) corrections to the ρ parameter, Nucl. Phys.B 755 (2006) 221 [hep-ph/0606232] [INSPIRE]. ADS Google Scholar
D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Oxford University Press, Oxford U.K. (1999). Google Scholar
M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) and indirect determination of the Higgs boson mass, Phys. Rev. Lett.93 (2004) 201805 [hep-ph/0407317] [INSPIRE]. ADS Google Scholar
M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP11 (2006) 048 [hep-ph/0608099] [INSPIRE]. ADS Google Scholar
M. Awramik, M. Czakon, A. Freitas and B. Kniehl, Two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \), Nucl. Phys.B 813 (2009) 174 [arXiv:0811.1364] [INSPIRE]. ADS Google Scholar
A. Freitas, private communication.
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE]. ADS Google Scholar
ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].
K. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + e − cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
P. Baikov, K. Chetyrkin, J. Kuhn and J. Rittinger, Complete \( \mathcal{O}\left( {\alpha_s^4} \right) \) QCD corrections to hadronic Z-decays, Phys. Rev. Lett.108 (2012) 222003 [arXiv:1201.5804] [INSPIRE]. ADS Google Scholar
A. Czarnecki and J.H. Kuhn, Nonfactorizable QCD and electroweak corrections to the hadronic Z boson decay rate, Phys. Rev. Lett.77 (1996) 3955 [hep-ph/9608366] [INSPIRE]. ADS Google Scholar
R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(ααs ) to the decay of the Z boson into bottom quarks, Phys. Lett.B 426 (1998) 125 [hep-ph/9712228] [INSPIRE]. ADS Google Scholar
D.Y. Bardin, S. Riemann and T. Riemann, Electroweak one loop corrections to the decay of the charged vector boson, Z. Phys.C 32 (1986) 121 [INSPIRE]. ADS Google Scholar
CDF, D0 collaboration, T.E.W. Group, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].
UTfit collaboration, M. Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP07 (2005) 028 [hep-ph/0501199] [INSPIRE]. ADS Google Scholar
O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett.109 (2012) 241802 [arXiv:1209.1101] [INSPIRE]. ADS Google Scholar
M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J.C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE]. ADS Google Scholar
M. Baak and R. Kogler, The global electroweak standard model fit after the Higgs discovery, arXiv:1306.0571 [INSPIRE].
D. Kennedy and B. Lynn, Electroweak radiative corrections with an effective lagrangian: four fermion processes, Nucl. Phys.B 322 (1989) 1 [INSPIRE]. ADS Google Scholar
D. Kennedy, B. Lynn, C. Im and R. Stuart, Electroweak cross-sections and asymmetries at the Z 0, Nucl. Phys.B 321 (1989) 83 [INSPIRE]. ADS Google Scholar
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. ADS Google Scholar
C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A global fit to extended oblique parameters, Phys. Lett.B 326 (1994) 276 [hep-ph/9307337] [INSPIRE]. ADS Google Scholar
C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev.D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE]. ADS Google Scholar
G. Altarelli, R. Barbieri and F. Caravaglios, The epsilon variables for electroweak precision tests: A Reappraisal, Phys. Lett.B 349 (1995) 145 [INSPIRE]. ADS Google Scholar
G. Altarelli, R. Barbieri and F. Caravaglios, Electroweak precision tests: a concise review, Int. J. Mod. Phys.A 13 (1998) 1031 [hep-ph/9712368] [INSPIRE]. ADS Google Scholar
P. Bamert, C. Burgess, J.M. Cline, D. London and E. Nardi, Rband new physics: a comprehensive analysis, Phys. Rev.D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE]. ADS Google Scholar
H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev.D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE]. ADS Google Scholar
D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev.D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE]. ADS Google Scholar
K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett.B 641 (2006) 62 [hep-ph/0605341] [INSPIRE]. ADS Google Scholar
A. Djouadi, G. Moreau and F. Richard, Resolving the \( A_{\mathrm{FB}}^{\mathrm{b}} \) puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys.B 773 (2007) 43 [hep-ph/0610173] [INSPIRE]. ADS Google Scholar
F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP09 (2010) 033 [arXiv:1005.3998] [INSPIRE]. Google Scholar
E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, JHEP05 (2011) 070 [arXiv:1011.6557] [INSPIRE]. ADS Google Scholar
R. Dermisek, S.-G. Kim and A. Raval, New vector boson near the Z-pole and the puzzle in precision electroweak data, Phys. Rev.D 84 (2011) 035006 [arXiv:1105.0773] [INSPIRE]. ADS Google Scholar
A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett.B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE]. ADS Google Scholar
R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev.D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE]. ADS Google Scholar
A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP04 (2012) 073 [arXiv:1202.1532] [INSPIRE]. ADS Google Scholar
C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, arXiv:1306.4655 [INSPIRE].
W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ADS Google Scholar
J. Elias-Miro, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, _γ_Z, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE]. ADS Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, arXiv:1305.0017 [INSPIRE].