Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson (original) (raw)

References

  1. U. Amaldi et al., A comprehensive analysis of data pertaining to the weak neutral current and the intermediate vector boson masses, Phys. Rev. D 36 (1987) 1385 [INSPIRE].
    ADS Google Scholar
  2. G. Costa, J.R. Ellis, G.L. Fogli, D.V. Nanopoulos and F. Zwirner, Neutral currents within and beyond the standard model, Nucl. Phys. B 297 (1988) 244 [INSPIRE].
    ADS Google Scholar
  3. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].
    ADS Google Scholar
  4. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
    ADS Google Scholar
  5. J. Erler and P. Langacker, Implications of high precision experiments and the CDF top quark candidates, Phys. Rev. D 52 (1995) 441 [hep-ph/9411203] [INSPIRE].
    ADS Google Scholar
  6. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].
    ADS Google Scholar
  7. G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].
  8. G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [INSPIRE].
    ADS Google Scholar
  9. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
    ADS Google Scholar
  10. B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].
    ADS Google Scholar
  11. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [INSPIRE].
    ADS Google Scholar
  12. ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
  13. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
    ADS Google Scholar
  14. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  15. CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
    ADS Google Scholar
  16. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 1305 (2013) 074] [arXiv:1205.0299] [INSPIRE].
  17. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
    ADS Google Scholar
  18. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].
    ADS Google Scholar
  19. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  20. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
    MathSciNet ADS Google Scholar
  21. A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].
    ADS MATH Google Scholar
  22. D.Y. Bardin et al., ZFITTER v.6.21: a semianalytical program for fermion pair production in e + eannihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].
    ADS MATH Google Scholar
  23. D.Y. Bardin et al., ZFITTER: an analytical program for fermion pair production in e + eannihilation, hep-ph/9412201 [INSPIRE].
  24. A. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + eannihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].
    ADS Google Scholar
  25. A. Akhundov, A. Arbuzov, S. Riemann and T. Riemann, ZFITTER 1985–2013, arXiv:1302.1395 [INSPIRE].
  26. G.-C. Cho and K. Hagiwara, Supersymmetry versus precision experiments revisited, Nucl. Phys. B 574 (2000) 623 [hep-ph/9912260] [INSPIRE].
    ADS Google Scholar
  27. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].
    ADS Google Scholar
  28. M. Ciuchini et al., 2000 CKM triangle analysis: a critical review with updated experimental inputs and theoretical parameters, JHEP 07 (2001) 013 [hep-ph/0012308] [INSPIRE].
    ADS Google Scholar
  29. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
    ADS Google Scholar
  30. S. Bethke, World summary of α s (2012), Nucl. Phys. Proc. Suppl. 234 (2013) 229 [arXiv:1210.0325] [INSPIRE].
    ADS Google Scholar
  31. H. Burkhardt and B. Pietrzyk, Recent BES measurements and the hadronic contribution to the QED vacuum polarization, Phys. Rev. D 84 (2011) 037502 [arXiv:1106.2991] [INSPIRE].
    ADS Google Scholar
  32. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  33. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
    ADS Google Scholar
  34. F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim. C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE].
    Google Scholar
  35. CDF, D0 collaboration, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].
    ADS Google Scholar
  36. ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4_._9 fb −1 of data, ATLAS-CONF-2012-095 (2012).
  37. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].
    ADS Google Scholar
  38. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184 [hep-ph/9706430] [INSPIRE].
    ADS Google Scholar
  39. K. Chetyrkin, Quark mass anomalous dimension to \( O\left( {\alpha_S^4} \right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].
    ADS Google Scholar
  40. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
    ADS MATH Google Scholar
  41. The LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.
  42. A. Sirlin, Radiative corrections in the SU(2) L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].
    ADS Google Scholar
  43. W. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2) L × U(1) theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].
  44. D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1_/_2 fermion scattering. 1. The one loop diagrammar, Nucl. Phys. B 175 (1980) 435 [INSPIRE].
    ADS Google Scholar
  45. D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1_/_2 fermion scattering. 2. The one loop amplitudes, Nucl. Phys. B 197 (1982) 1 [INSPIRE].
    ADS Google Scholar
  46. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].
    ADS Google Scholar
  47. A. Djouadi and C. Verzegnassi, Virtual very heavy top effects in LEP/SLC precision measurements, Phys. Lett. B 195 (1987) 265 [INSPIRE].
    ADS Google Scholar
  48. A. Djouadi, O(αα s ) vacuum polarization functions of the standard model gauge bosons, Nuovo Cim. A 100 (1988) 357 [INSPIRE].
    ADS Google Scholar
  49. B.A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nucl. Phys. B 347 (1990) 86 [INSPIRE].
    ADS Google Scholar
  50. F. Halzen and B.A. Kniehl, Δ_r beyond one loop_, Nucl. Phys. B 353 (1991) 567 [INSPIRE].
    ADS Google Scholar
  51. B.A. Kniehl and A. Sirlin, Dispersion relations for vacuum polarization functions in electroweak physics, Nucl. Phys. B 371 (1992) 141 [INSPIRE].
    ADS Google Scholar
  52. B.A. Kniehl and A. Sirlin, On the effect of the \( t\overline{t} \) threshold on electroweak parameters, Phys. Rev. D 47 (1993) 883 [INSPIRE].
    ADS Google Scholar
  53. A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: complete QCD corrections, Phys. Rev. D 49 (1994) 3499 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].
  54. L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, \( O\left( {\alpha \alpha_S^2} \right) \) correction to the electroweak ρ parameter, Phys. Lett. B 336 (1994) 560 [Erratum ibid. B 349 (1995) 597-598] [hep-ph/9406363] [INSPIRE].
  55. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Corrections of order \( \mathcal{O}\left( {{G_F}M_t^2\alpha_s^2} \right) \) to the ρ parameter, Phys. Lett. B 351 (1995) 331 [hep-ph/9502291] [INSPIRE].
    ADS Google Scholar
  56. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, QCD corrections from top quark to relations between electroweak parameters to order \( \alpha_S^2 \), Phys. Rev. Lett. 75 (1995) 3394 [hep-ph/9504413] [INSPIRE].
    ADS Google Scholar
  57. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Radiative correction effects of a very heavy top, Phys. Lett. B 288 (1992) 95 [Erratum ibid. B 312 (1993) 511] [hep-ph/9205238] [INSPIRE].
  58. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Two loop heavy top effects in the standard model, Nucl. Phys. B 409 (1993) 105 [INSPIRE].
    ADS Google Scholar
  59. J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: a simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249 [INSPIRE].
    ADS Google Scholar
  60. J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop large top mass corrections to electroweak parameters: analytic results valid for arbitrary Higgs mass, Phys. Rev. D 51 (1995) 3820 [INSPIRE].
    ADS Google Scholar
  61. G. Degrassi, P. Gambino and A. Vicini, Two loop heavy top effects on the m Z -m W interdependence, Phys. Lett. B 383 (1996) 219 [hep-ph/9603374] [INSPIRE].
    ADS Google Scholar
  62. G. Degrassi, P. Gambino and A. Sirlin, Precise calculation of M W , sin2 θ W (M Z) and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \), Phys. Lett. B 394 (1997) 188 [hep-ph/9611363] [INSPIRE].
    ADS Google Scholar
  63. G. Degrassi and P. Gambino, Two loop heavy top corrections to the Z 0 boson partial widths, Nucl. Phys. B 567 (2000) 3 [hep-ph/9905472] [INSPIRE].
    ADS Google Scholar
  64. A. Freitas, W. Hollik, W. Walter and G. Weiglein, Complete fermionic two loop results for the M W -M Z interdependence, Phys. Lett. B 495 (2000) 338 [Erratum ibid. B 570 (2003) 260-264] [hep-ph/0007091] [INSPIRE].
  65. A. Freitas, W. Hollik, W. Walter and G. Weiglein, Electroweak two loop corrections to the M W -M Z mass correlation in the standard model, Nucl. Phys. B 632 (2002) 189 [Erratum ibid. B 666 (2003) 305-307] [hep-ph/0202131] [INSPIRE].
  66. M. Awramik and M. Czakon, Complete two loop bosonic contributions to the muon lifetime in the standard model, Phys. Rev. Lett. 89 (2002) 241801 [hep-ph/0208113] [INSPIRE].
    ADS Google Scholar
  67. A. Onishchenko and O. Veretin, Two loop bosonic electroweak corrections to the muon lifetime and M Z -M W interdependence, Phys. Lett. B 551 (2003) 111 [hep-ph/0209010] [INSPIRE].
    ADS Google Scholar
  68. M. Awramik, M. Czakon, A. Onishchenko and O. Veretin, Bosonic corrections to Δ_r at the two loop level_, Phys. Rev. D 68 (2003) 053004 [hep-ph/0209084] [INSPIRE].
    ADS Google Scholar
  69. M. Awramik and M. Czakon, Two loop electroweak bosonic corrections to the muon decay lifetime, Nucl. Phys. Proc. Suppl. 116 (2003) 238 [hep-ph/0211041] [INSPIRE].
    ADS Google Scholar
  70. M. Awramik and M. Czakon, Complete two loop electroweak contributions to the muon lifetime in the standard model, Phys. Lett. B 568 (2003) 48 [hep-ph/0305248] [INSPIRE].
    ADS Google Scholar
  71. J. van der Bij, K. Chetyrkin, M. Faisst, G. Jikia and T. Seidensticker, Three loop leading top mass contributions to the rho parameter, Phys. Lett. B 498 (2001) 156 [hep-ph/0011373] [INSPIRE].
    ADS Google Scholar
  72. M. Faisst, J.H. Kuhn, T. Seidensticker and O. Veretin, Three loop top quark contributions to the ρ parameter, Nucl. Phys. B 665 (2003) 649 [hep-ph/0302275] [INSPIRE].
    ADS Google Scholar
  73. G. Weiglein, Results for precision observables in the electroweak standard model at two loop order and beyond, Acta Phys. Polon. B 29 (1998) 2735 [hep-ph/9807222] [INSPIRE].
    ADS Google Scholar
  74. R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak correction to the Rho parameter in the large Higgs mass limit, Nucl. Phys. B 713 (2005) 278 [hep-ph/0410216] [INSPIRE].
    ADS Google Scholar
  75. R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak corrections to the W-boson mass and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) in the large Higgs mass limit, Nucl. Phys. B 725 (2005) 3 [hep-ph/0504092] [INSPIRE].
    ADS Google Scholar
  76. Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B 622 (2005) 124 [hep-ph/0504055] [INSPIRE].
    ADS Google Scholar
  77. K. Chetyrkin, M. Faisst, J.H. Kuhn, P. Maierhofer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003 [hep-ph/0605201] [INSPIRE].
    ADS Google Scholar
  78. R. Boughezal and M. Czakon, Single scale tadpoles and \( O\left( {{G_F}m_t^2\alpha_s^3} \right) \) corrections to the ρ parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232] [INSPIRE].
    ADS Google Scholar
  79. D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Oxford University Press, Oxford U.K. (1999).
    Google Scholar
  80. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) and indirect determination of the Higgs boson mass, Phys. Rev. Lett. 93 (2004) 201805 [hep-ph/0407317] [INSPIRE].
    ADS Google Scholar
  81. M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [INSPIRE].
    ADS Google Scholar
  82. M. Awramik, M. Czakon, A. Freitas and B. Kniehl, Two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \), Nucl. Phys. B 813 (2009) 174 [arXiv:0811.1364] [INSPIRE].
    ADS Google Scholar
  83. A. Freitas, private communication.
  84. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
    ADS Google Scholar
  85. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].
  86. K. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + ecross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
  87. P. Baikov, K. Chetyrkin, J. Kuhn and J. Rittinger, Complete \( \mathcal{O}\left( {\alpha_s^4} \right) \) QCD corrections to hadronic Z-decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].
    ADS Google Scholar
  88. A. Czarnecki and J.H. Kuhn, Nonfactorizable QCD and electroweak corrections to the hadronic Z boson decay rate, Phys. Rev. Lett. 77 (1996) 3955 [hep-ph/9608366] [INSPIRE].
    ADS Google Scholar
  89. R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(αα s ) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
    ADS Google Scholar
  90. D.Y. Bardin, S. Riemann and T. Riemann, Electroweak one loop corrections to the decay of the charged vector boson, Z. Phys. C 32 (1986) 121 [INSPIRE].
    ADS Google Scholar
  91. CDF, D0 collaboration, T.E.W. Group, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].
  92. UTfit collaboration, M. Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07 (2005) 028 [hep-ph/0501199] [INSPIRE].
    ADS Google Scholar
  93. J. Erler, Tests of the electroweak standard model, arXiv:1209.3324 [INSPIRE].
  94. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].
    ADS Google Scholar
  95. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].
    ADS Google Scholar
  96. M. Baak and R. Kogler, The global electroweak standard model fit after the Higgs discovery, arXiv:1306.0571 [INSPIRE].
  97. D. Kennedy and B. Lynn, Electroweak radiative corrections with an effective lagrangian: four fermion processes, Nucl. Phys. B 322 (1989) 1 [INSPIRE].
    ADS Google Scholar
  98. D. Kennedy, B. Lynn, C. Im and R. Stuart, Electroweak cross-sections and asymmetries at the Z 0, Nucl. Phys. B 321 (1989) 83 [INSPIRE].
    ADS Google Scholar
  99. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].
    ADS Google Scholar
  100. I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].
    ADS Google Scholar
  101. C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].
    ADS Google Scholar
  102. C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].
    ADS Google Scholar
  103. G. Altarelli, R. Barbieri and F. Caravaglios, The epsilon variables for electroweak precision tests: A Reappraisal, Phys. Lett. B 349 (1995) 145 [INSPIRE].
    ADS Google Scholar
  104. G. Altarelli, R. Barbieri and F. Caravaglios, Electroweak precision tests: a concise review, Int. J. Mod. Phys. A 13 (1998) 1031 [hep-ph/9712368] [INSPIRE].
    ADS Google Scholar
  105. P. Bamert, C. Burgess, J.M. Cline, D. London and E. Nardi, R b and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE].
    ADS Google Scholar
  106. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].
    ADS Google Scholar
  107. D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].
    ADS Google Scholar
  108. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
    ADS Google Scholar
  109. A. Djouadi, G. Moreau and F. Richard, Resolving the \( A_{\mathrm{FB}}^{\mathrm{b}} \) puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys. B 773 (2007) 43 [hep-ph/0610173] [INSPIRE].
    ADS Google Scholar
  110. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].
    Google Scholar
  111. L. Da Rold, Solving the \( A_{FB}^b \) anomaly in natural composite models, JHEP 02 (2011) 034 [arXiv:1009.2392] [INSPIRE].
    Google Scholar
  112. E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, JHEP 05 (2011) 070 [arXiv:1011.6557] [INSPIRE].
    ADS Google Scholar
  113. R. Dermisek, S.-G. Kim and A. Raval, New vector boson near the Z-pole and the puzzle in precision electroweak data, Phys. Rev. D 84 (2011) 035006 [arXiv:1105.0773] [INSPIRE].
    ADS Google Scholar
  114. A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].
    ADS Google Scholar
  115. R. Dermisek, S.-G. Kim and A. Raval, _Z_’ near the Z-pole, Phys. Rev. D 85 (2012) 075022 [arXiv:1201.0315] [INSPIRE].
    ADS Google Scholar
  116. D. Guadagnoli and G. Isidori, B(B sμ + μ −) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].
  117. K. Kumar, W. Shepherd, T.M. Tait and R. Vega-Morales, Beautiful mirrors at the LHC, JHEP 08 (2010) 052 [arXiv:1004.4895] [INSPIRE].
    ADS Google Scholar
  118. B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].
    ADS Google Scholar
  119. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].
    ADS Google Scholar
  120. A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].
    ADS Google Scholar
  121. A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].
  122. C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, arXiv:1306.4655 [INSPIRE].
  123. W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
    ADS Google Scholar
  124. F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].
    ADS Google Scholar
  125. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].
    MathSciNet ADS Google Scholar
  126. J. Elias-Miro, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, _γ_Z, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].
    ADS Google Scholar
  127. E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, arXiv:1305.0017 [INSPIRE].

Download references