Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence (original) (raw)

Abstract

We calculate the order λ, λ2 and λ_y_ 2 terms of the 59 × 59 one-loop anomalous dimension matrix of dimension-six operators, where λ and y are the Standard Model Higgs self-coupling and a generic Yukawa coupling, respectively. The dimension-six operators modify the running of the Standard Model parameters themselves, and we compute the complete one-loop result for this. We discuss how there is mixing between operators for which no direct one-particle-irreducible diagram exists, due to operator replacements by the equations of motion.

Article PDF

Similar content being viewed by others

References

  1. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(_h_− > γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
    Article ADS Google Scholar
  3. W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
    Article ADS Google Scholar
  4. C. Arzt, M. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
    Article ADS Google Scholar
  5. J. Elias-Miró, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ_,_ γ_Z_, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].
    Article ADS Google Scholar
  6. E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, JHEP 09 (2013) 063 [arXiv:1305.0017] [INSPIRE].
    Article Google Scholar
  7. A.V. Manohar, An exactly solvable model for dimension six Higgs operators and h → γγ, arXiv:1305.3927 [INSPIRE].
  8. H.D. Politzer, Power corrections at short distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].
    Article MathSciNet ADS Google Scholar
  9. H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].
    Article ADS Google Scholar
  10. A.V. Manohar, The HQET/NRQCD lagrangian to order \( {{{{\alpha_s}}} \left/ {{m_Q^3}} \right.} \), Phys. Rev. D 56 (1997) 230 [hep-ph/9701294] [INSPIRE].
    ADS Google Scholar
  11. A.V. Manohar, Effective field theories, hep-ph/9606222 [INSPIRE].
  12. M.B. Einhorn and J. Wudka, Effective β-functions for effective field theory, JHEP 08 (2001) 025 [hep-ph/0105035] [INSPIRE].
    Article MathSciNet ADS Google Scholar
  13. F.J. Gilman and M.B. Wise, Effective hamiltonian for Δ_s_ = 1 weak nonleptonic decays in the six quark model, Phys. Rev. D 20 (1979) 2392 [INSPIRE].
    ADS Google Scholar
  14. H. Georgi, Weak interactions and modern particle theory, Dover Publications, U.S.A. (2009).
    Google Scholar
  15. E.E. Jenkins and A.V. Manohar, Algebraic structure of lepton and quark flavor invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].
    Article ADS Google Scholar
  16. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
    Article ADS Google Scholar
  17. J. Elias-Miro, J. Espinosa, E. Masso and A. Pomarol, _Higgs windows to new physics through D_=6 operators: Constraints and one-loop anomalous dimensions, arXiv:1308.1879 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0319, U.S.A
    Elizabeth E. Jenkins & Aneesh V. Manohar
  2. Theory Division, Physics Department, CERN, CH-1211, Geneva 23, Switzerland
    Michael Trott

Authors

  1. Elizabeth E. Jenkins
  2. Aneesh V. Manohar
  3. Michael Trott

Corresponding author

Correspondence toMichael Trott.

Additional information

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Jenkins, E.E., Manohar, A.V. & Trott, M. Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence.J. High Energ. Phys. 2013, 87 (2013). https://doi.org/10.1007/JHEP10(2013)087

Download citation

Keywords