Higher order corrections to the trilinear Higgs self-couplings in the real NMSSM (original) (raw)
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. ADS Google Scholar
CMS Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: Standard Higgs and Hidden Higgs, Phys. Lett.B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE]. ADS Google Scholar
J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP05 (2012) 097 [arXiv:1202.3697] [INSPIRE]. ADS Google Scholar
P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP06 (2012) 117 [arXiv:1203.4254] [INSPIRE]. ADS Google Scholar
J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass ~125 GeV, JHEP06 (2012) 140 [arXiv:1204.0464] [INSPIRE]. ADS Google Scholar
M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett.109 (2012) 101801 [arXiv:1205.2699] [INSPIRE]. ADS Google Scholar
T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev.D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE]. ADS Google Scholar
P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett.B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE]. ADS Google Scholar
D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP10 (2012) 196 [arXiv:1207.1718] [INSPIRE]. ADS Google Scholar
F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model, Phys. Rev.D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE]. ADS Google Scholar
D. Miller, S. Choi, B. Eberle, M. Muhlleitner and P. Zerwas, Measuring the spin of the Higgs boson, Phys. Lett.B 505 (2001) 149 [hep-ph/0102023] [INSPIRE]. ADS Google Scholar
T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett.88 (2002) 051801 [hep-ph/0105325] [INSPIRE]. ADS Google Scholar
S. Choi, D. Miller, M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett.B 553 (2003) 61 [hep-ph/0210077] [INSPIRE]. ADS Google Scholar
C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in H → ZZ → l(1) + l(1) − l(2) + l(2)− at the LHC, Eur. Phys. J.C 32 (2004) 209 [hep-ph/0212396] [INSPIRE]. ADS Google Scholar
J.R. Ellis, J.S. Lee and A. Pilaftsis, CERN LHC signatures of resonant CP-violation in a minimal supersymmetric Higgs sector, Phys. Rev.D 70 (2004) 075010 [hep-ph/0404167] [INSPIRE]. ADS Google Scholar
S. Choi, J. Kalinowski, Y. Liao and P. Zerwas, H/A Higgs mixing in CP-noninvariant supersymmetric theories, Eur. Phys. J.C 40 (2005) 555 [hep-ph/0407347] [INSPIRE]. ADS Google Scholar
C. Buszello and P. Marquard, Determination of spin and CP of the Higgs boson from WBF, hep-ph/0603209 [INSPIRE].
R.M. Godbole, D. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP12 (2007) 031 [arXiv:0708.0458] [INSPIRE]. ADS Google Scholar
S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their tau decay channels, Phys. Rev. Lett.100 (2008) 171605 [arXiv:0801.2297] [INSPIRE]. ADS Google Scholar
S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the tau to 1-prong decay channels, Phys. Lett.B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE]. ADS Google Scholar
K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP07 (2009) 101 [arXiv:0905.4314] [INSPIRE]. ADS Google Scholar
Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev.D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE]. ADS Google Scholar
A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev.D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE]. ADS Google Scholar
N.D. Christensen, T. Han and Y. Li, Testing CP-violation in ZZH Interactions at the LHC, Phys. Lett.B 693 (2010) 28 [arXiv:1005.5393] [INSPIRE]. ADS Google Scholar
C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev.D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE]. ADS Google Scholar
U. De Sanctis, M. Fabbrichesi and A. Tonero, Telling the spin of the ’_Higgs boson_’ at the LHC, Phys. Rev.D 84 (2011) 015013 [arXiv:1103.1973] [INSPIRE]. ADS Google Scholar
S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its tau decays at the LHC, Phys. Rev.D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE]. ADS Google Scholar
C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP06 (2012) 108 [arXiv:1203.5788] [INSPIRE]. ADS Google Scholar
S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev.D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE]. ADS Google Scholar
R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘_Higgs_’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].
D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev.D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE]. ADS Google Scholar
A. Alves, Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery, Phys. Rev.D 86 (2012) 113010 [arXiv:1209.1037] [INSPIRE]. ADS Google Scholar
S. Choi, M. Muhlleitner and P. Zerwas, Theoretical Basis of Higgs-Spin Analysis in H → γγ and Zγ Decays, Phys. Lett.B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE]. ADS Google Scholar
J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, Distinguishing ’_Higgs_’ spin hypotheses using γγ and WW * decays, Eur. Phys. J.C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE]. ADS Google Scholar
J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, Distinguishing ’_Higgs_’ spin hypotheses using γγ and WW * decays, Eur. Phys. J.C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE]. ADS Google Scholar
Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs Signal and Background in the 2_e_2_μ Golden Channel_, JHEP01 (2013) 182 [arXiv:1211.1959] [INSPIRE]. ADS Google Scholar
J. Frank, M. Rauch and D. Zeppenfeld, Spin-2 Resonances in Vector-Boson-Fusion Processes at NLO QCD, Phys. Rev.D 87 (2013) 055020 [arXiv:1211.3658] [INSPIRE]. ADS Google Scholar
C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP01 (2013) 148 [arXiv:1212.0843] [INSPIRE]. ADS Google Scholar
A. Djouadi, R. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett.B 723 (2013) 307 [arXiv:1301.4965] [INSPIRE]. ADS Google Scholar
J. Frank, M. Rauch and D. Zeppenfeld, Higgs Spin Determination in the WW channel and beyond, arXiv:1305.1883 [INSPIRE].
R. Godbole, D.J. Miller, K. Mohan and C.D. White, Boosting Higgs CP properties via VH Production at the Large Hadron Collider, arXiv:1306.2573 [INSPIRE].
A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Testing Higgs selfcouplings at e + e − linear colliders, Eur. Phys. J.C 10 (1999) 27 [hep-ph/9903229] [INSPIRE]. ADS Google Scholar
A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J.C 10 (1999) 45 [hep-ph/9904287] [INSPIRE]. ADS Google Scholar
M.M. Muhlleitner, Higgs particles in the standard model and supersymmetric theories, hep-ph/0008127 [INSPIRE].
U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett.89 (2002) 151801 [hep-ph/0206024] [INSPIRE]. ADS Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev.D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE]. ADS Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev.D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE]. ADS Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev.D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE]. ADS Google Scholar
A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the b \( \overline{b} \) W + W − channel, Phys. Rev.D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE]. ADS Google Scholar
F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP06 (2013) 016 [arXiv:1301.3492] [INSPIRE]. ADS Google Scholar
G. Cynolter, E. Lendvai and G. Pocsik, Resonance production of three neutral supersymmetric Higgs bosons at LHC, Acta Phys. Polon.B 31 (2000) 1749 [hep-ph/0003008] [INSPIRE]. ADS Google Scholar
T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev.D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev.D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE]. ADS Google Scholar
A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE]. ADS Google Scholar
P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys.B 90 (1975) 104 [INSPIRE]. ADS Google Scholar
P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett.B 64 (1976) 159 [INSPIRE]. ADS Google Scholar
P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett.B 69 (1977) 489 [INSPIRE]. ADS Google Scholar
P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the Goldstino Couplings and the Neutral Currents, Phys. Lett.B 84 (1979) 416. ADS Google Scholar
H.P. Nilles, M. Srednicki and D. Wyler, Weak Interaction Breakdown Induced by Supergravity, Phys. Lett.B 120 (1983) 346 [INSPIRE]. ADS Google Scholar
J. Frere, D. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys.B 222 (1983) 11 [INSPIRE]. ADS Google Scholar
J. Derendinger and C.A. Savoy, Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories, Nucl. Phys.B 237 (1984) 307 [INSPIRE]. ADS Google Scholar
A. Veselov, M. Vysotsky and K. Ter-Martirosian, Low-energy supergravity and the light t quark, Sov. Phys. JETP63 (1986) 489 [INSPIRE]. Google Scholar
J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev.D 39 (1989) 844 [INSPIRE]. ADS Google Scholar
M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys.A 4 (1989) 3635 [INSPIRE]. ADS Google Scholar
U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett.B 315 (1993) 331 [hep-ph/9307322] [INSPIRE]. ADS Google Scholar
U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the supersymmetric model with a gauge singlet, Z. Phys.C 67 (1995) 665 [hep-ph/9502206] [INSPIRE]. ADS Google Scholar
U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys.B 492 (1997) 21 [hep-ph/9611251] [INSPIRE]. ADS Google Scholar
U. Ellwanger, Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet, Phys. Lett.B 303 (1993) 271 [hep-ph/9302224] [INSPIRE]. ADS Google Scholar
P. Pandita, Radiative corrections to the scalar Higgs masses in a nonminimal supersymmetric Standard Model, Z. Phys.C 59 (1993) 575 [INSPIRE]. ADS Google Scholar
T. Elliott, S. King and P. White, Radiative corrections to Higgs boson masses in the next-to-minimal supersymmetric Standard Model, Phys. Rev.D 49 (1994) 2435 [hep-ph/9308309] [INSPIRE]. ADS Google Scholar
S. King and P. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev.D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE]. ADS Google Scholar
F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model, Int. J. Mod. Phys.A 12 (1997) 479 [hep-ph/9512366] [INSPIRE]. ADS Google Scholar
D. Miller, R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys.B 681 (2004) 3 [hep-ph/0304049] [INSPIRE]. ADS Google Scholar
U. Ellwanger, Higgs Bosons in the Next-to-Minimal Supersymmetric Standard Model at the LHC, Eur. Phys. J.C 71 (2011) 1782 [arXiv:1108.0157] [INSPIRE]. ADS Google Scholar
K. Ender, T. Graf, M. Muhlleitner and H. Rzehak, Analysis of the NMSSM Higgs Boson Masses at One-Loop Level, Phys. Rev.D 85 (2012) 075024 [arXiv:1111.4952] [INSPIRE]. ADS Google Scholar
T. Graf, R. Grober, M. Muhlleitner, H. Rzehak and K. Walz, Higgs Boson Masses in the Complex NMSSM at One-Loop Level, JHEP10 (2012) 122 [arXiv:1206.6806] [INSPIRE]. ADS Google Scholar
M. Bastero-Gil, C. Hugonie, S. King, D. Roy and S. Vempati, Does LEP prefer the NMSSM?, Phys. Lett.B 489 (2000) 359 [hep-ph/0006198] [INSPIRE]. ADS Google Scholar
A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett.105 (2010) 091802 [arXiv:1005.1282] [INSPIRE]. ADS Google Scholar
U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results, JHEP09 (2011) 105 [arXiv:1107.2472] [INSPIRE]. ADS Google Scholar
J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP03 (2012) 086 [arXiv:1202.5821] [INSPIRE]. ADS Google Scholar
J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP10 (2012) 079 [arXiv:1207.3698] [INSPIRE]. ADS Google Scholar
U. Ellwanger, Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet, Phys. Lett.B 303 (1993) 271 [hep-ph/9302224] [INSPIRE]. ADS Google Scholar
T. Elliott, S. King and P. White, Squark contributions to Higgs boson masses in the next-to-minimal supersymmetric standard model, Phys. Lett.B 314 (1993) 56 [hep-ph/9305282] [INSPIRE]. ADS Google Scholar
T. Elliott, S. King and P. White, Radiative corrections to Higgs boson masses in the next-to-minimal supersymmetric Standard Model, Phys. Rev.D 49 (1994) 2435 [hep-ph/9308309] [INSPIRE]. ADS Google Scholar
P. Pandita, Radiative corrections to the scalar Higgs masses in a nonminimal supersymmetric Standard Model, Z. Phys.C 59 (1993) 575 [INSPIRE]. ADS Google Scholar
P. Pandita, One loop radiative corrections to the lightest Higgs scalar mass in nonminimal supersymmetric Standard Model, Phys. Lett.B 318 (1993) 338 [INSPIRE]. ADS Google Scholar
U. Ellwanger and C. Hugonie, Yukawa induced radiative corrections to the lightest Higgs boson mass in the NMSSM, Phys. Lett.B 623 (2005) 93 [hep-ph/0504269] [INSPIRE]. ADS Google Scholar
G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys.B 825 (2010) 119 [arXiv:0907.4682] [INSPIRE]. ADS Google Scholar
F. Staub, W. Porod and B. Herrmann, The Electroweak sector of the NMSSM at the one-loop level, JHEP10 (2010) 040 [arXiv:1007.4049] [INSPIRE]. ADS Google Scholar
S. Ham, J. Kim, S. Oh and D. Son, The Charged Higgs boson in the next-to-minimal supersymmetric standard model with explicit CP-violation, Phys. Rev.D 64 (2001) 035007 [hep-ph/0104144] [INSPIRE]. ADS Google Scholar
S. Ham, S. Kim, S. OH and D. Son, Higgs bosons of the NMSSM with explicit CP-violation at the ILC, Phys. Rev.D 76 (2007) 115013 [arXiv:0708.2755] [INSPIRE]. ADS Google Scholar
S. Ham, S. Oh and D. Son, Neutral Higgs sector of the next-to-minimal supersymmetric standard model with explicit CP-violation, Phys. Rev.D 65 (2002) 075004 [hep-ph/0110052] [INSPIRE]. ADS Google Scholar
S. Ham, Y. Jeong and S. Oh, Radiative CP-violation in the Higgs sector of the next-to-minimal supersymmetric model, hep-ph/0308264 [INSPIRE].
K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, The Higgs Boson Sector of the Next-to-MSSM with CP-violation, Phys. Rev.D 82 (2010) 075007 [arXiv:1006.1458] [INSPIRE]. ADS Google Scholar
A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE]. ADS Google Scholar
K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \( \alpha_s^3 \), Nucl. Phys.B 573 (2000) 617 [hep-ph/9911434] [INSPIRE]. ADS Google Scholar
K. Melnikov and T.V. Ritbergen, The Three loop relation between the MS-bar and the pole quark masses, Phys. Lett.B 482 (2000) 99 [hep-ph/9912391] [INSPIRE]. ADS Google Scholar
M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the t \( \overline{b} \) H + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys.B 577 (2000) 88 [hep-ph/9912516] [INSPIRE]. ADS Google Scholar
R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Dimensional Reduction applied to QCD at three loops, JHEP09 (2006) 053 [hep-ph/0607240] [INSPIRE]. ADS Google Scholar
D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys.B 491 (1997) 3 [hep-ph/9606211] [INSPIRE]. ADS Google Scholar
M.S. Carena, J.R. Ellis, S. Mrenna, A. Pilaftsis and C. Wagner, Collider probes of the MSSM Higgs sector with explicit CP-violation, Nucl. Phys.B 659 (2003) 145 [hep-ph/0211467] [INSPIRE]. ADS Google Scholar
J. Guasch, P. Hafliger and M. Spira, MSSM Higgs decays to bottom quark pairs revisited, Phys. Rev.D 68 (2003) 115001 [hep-ph/0305101] [INSPIRE]. ADS Google Scholar
D. Noth and M. Spira, Higgs Boson Couplings to Bottom Quarks: Two-Loop Supersymmetry-QCD Corrections, Phys. Rev. Lett.101 (2008) 181801 [arXiv:0808.0087] [INSPIRE]. ADS Google Scholar
D. Noth and M. Spira, Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order, JHEP06 (2011) 084 [arXiv:1001.1935] [INSPIRE]. ADS Google Scholar
L. Mihaila and C. Reisser, \( O\left( {\alpha_s^2} \right) \) corrections to fermionic Higgs decays in the MSSM, JHEP08 (2010) 021 [arXiv:1007.0693] [INSPIRE]. ADS Google Scholar
A. Dabelstein, Fermionic decays of neutral MSSM Higgs bosons at the one loop level, Nucl. Phys.B 456 (1995) 25 [hep-ph/9503443] [INSPIRE]. ADS Google Scholar
M. Frank et al., The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP02 (2007) 047 [hep-ph/0611326] [INSPIRE]. ADS Google Scholar
K. Williams and G. Weiglein, Precise predictions for ha → hbhcdecays in the complex MSSM, Phys. Lett.B 660 (2008) 217 [arXiv:0710.5320] [INSPIRE]. ADS Google Scholar
N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan(β) and gauge invariance, Phys. Rev.D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE]. ADS Google Scholar
K.E. Williams, H. Rzehak and G. Weiglein, Higher order corrections to Higgs boson decays in the MSSM with complex parameters, Eur. Phys. J.C 71 (2011) 1669 [arXiv:1103.1335] [INSPIRE]. ADS Google Scholar
F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun.182 (2011) 808 [arXiv:1002.0840] [INSPIRE]. ADSMATH Google Scholar
J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun.60 (1990) 165 [INSPIRE]. ADS Google Scholar
T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE]. ADS Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev.D 86 (2012) 010001 [INSPIRE]. ADS Google Scholar
F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim.C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE]. Google Scholar
ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
CMS collaboration, Inclusive search for supersymmetry using the razor variables in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett.111 (2013) 081802 [arXiv:1212.6961] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Search for direct production of the top squark in the all-hadronic ttbar + etmiss final state in 21 fb −1 of p-pcollisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
ATLAS collaboration, Search for direct stop pair production in events with a Z boson, b-jets and missing transverse energy with the ATLAS detector using 21 fb −1 from proton-proton collision at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-025 (2013).
ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in sqrts = 8_,TeV pp collisions using 21 fb_ −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
ATLAS collaboration, Search for direct top squark pair production in final states with two leptons in \( \sqrt{s} \) = 8 TeV pp collisions using 20 fb −1 of ATLAS data, ATLAS-CONF-2013-048 (2013).
ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2013-053 (2013).
ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s} \) = 7 TeV proton-proton collisions, Eur. Phys. J.C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Search for light top squark pair production in final states with leptons and b − jets with the ATLAS detector in \( \sqrt{s} \) = 7 TeV proton-proton collisions, Phys. Lett.B 720 (2013) 13 [arXiv:1209.2102] [INSPIRE]. ADS Google Scholar
CMS collaboration, Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV, CMS-PAS-SUS-13-011 (2013).
CMS collaboration, S. Chatrchyan et al., Inclusive search for supersymmetry using the razor variables in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett.111 (2013) 081802 [arXiv:1212.6961] [INSPIRE]. ADS Google Scholar
CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable alphaT, JHEP01 (2013) 077 [arXiv:1210.8115] [INSPIRE]. ADS Google Scholar
CMS collaboration, Scalar Top Quark Search with Jets and Missing Momentum in pp Collisions at \( \sqrt{s} \) = 7 TeV, CMS-PAS-SUS-11-030 (2011).
ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τν in top quark pair events using pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP06 (2012) 039 [arXiv:1204.2760] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τν in ttbar events using 4.6 fb 1 of pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2012-011 (2012).
ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs − in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).
CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP07 (2012) 143 [arXiv:1205.5736] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE]. ADSMATH Google Scholar
A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon.B 38 (2007) 635 [hep-ph/0609292] [INSPIRE]. ADS Google Scholar
U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP02 (2005) 066 [hep-ph/0406215] [INSPIRE]. ADS Google Scholar
U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun.175 (2006) 290 [hep-ph/0508022] [INSPIRE]. ADSMATH Google Scholar
U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun.177 (2007) 399 [hep-ph/0612134] [INSPIRE]. ADS Google Scholar
M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun.168 (2005) 46 [hep-ph/0311167] [INSPIRE]. ADS Google Scholar
M. Muhlleitner, SDECAY: A Fortran code for SUSY particle decays in the MSSM, Acta Phys. Polon.B 35 (2004) 2753 [hep-ph/0409200] [INSPIRE]. ADS Google Scholar
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.181 (2010) 138 [arXiv:0811.4169] [INSPIRE]. ADSMATH Google Scholar
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.182 (2011) 2605 [arXiv:1102.1898] [INSPIRE]. ADS Google Scholar
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).
CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s =7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (*) → ℓνℓν decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev.D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE]. ADS Google Scholar
W. Hollik and S. Penaranda, Yukawa coupling quantum corrections to the selfcouplings of the lightest MSSM Higgs boson, Eur. Phys. J.C 23 (2002) 163 [hep-ph/0108245] [INSPIRE]. ADS Google Scholar
A. Dobado, M.J. Herrero, W. Hollik and S. Penaranda, Selfinteractions of the lightest MSSM Higgs boson in the large pseudoscalar mass limit, Phys. Rev.D 66 (2002) 095016 [hep-ph/0208014] [INSPIRE]. ADS Google Scholar
E.N. Glover and J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys.B 309 (1988) 282 [INSPIRE]. ADS Google Scholar
T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE]. ADS Google Scholar
D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett.B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE]. ADS Google Scholar
W.-Y. Keung, Double Higgs From W − W Fusion, Mod. Phys. Lett.A 2 (1987) 765 [INSPIRE]. ADS Google Scholar
D.A. Dicus, K.J. Kallianpur and S.S. Willenbrock, Higgs Boson Pair Production in the Effective W Approximation, Phys. Lett.B 200 (1988) 187 [INSPIRE]. ADS Google Scholar
K.J. Kallianpur, Pair Production of Higgs Bosons via Heavy Quark Annihilation, Phys. Lett.B 215 (1988) 392 [INSPIRE]. ADS Google Scholar
A. Abbasabadi, W. Repko, D.A. Dicus and R. Vega, Comparison of Exact and Effective Gauge Boson Calculations for Gauge Boson Fusion Processes, Phys. Rev.D 38 (1988) 2770 [INSPIRE]. ADS Google Scholar
A. Abbasabadi, W. Repko, D.A. Dicus and R. Vega, Single and Double Higgs Production by Gauge Boson Fusion, Phys. Lett.B 213 (1988) 386 [INSPIRE]. ADS Google Scholar
A. Dobrovolskaya and V. Novikov, On heavy Higgs boson production, Z. Phys.C 52 (1991) 427 [INSPIRE]. ADS Google Scholar
V.D. Barger, T. Han and R. Phillips, Double Higgs Boson Bremsstrahlung From W and Z Bosons at Supercolliders, Phys. Rev.D 38 (1988) 2766 [INSPIRE]. ADS Google Scholar
M. Moretti, S. Moretti, F. Piccinini, R. Pittau and A. Polosa, Higgs boson self-couplings at the LHC as a probe of extended Higgs sectors, JHEP02 (2005) 024 [hep-ph/0410334] [INSPIRE]. ADS Google Scholar
J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP04 (2013) 134 [arXiv:1301.6437] [INSPIRE]. ADS Google Scholar
M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP10 (2012) 004 [arXiv:1206.7120] [INSPIRE]. ADS Google Scholar
S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev.D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE]. ADS Google Scholar
M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett.70 (1993) 1372 [INSPIRE]. ADS Google Scholar
M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett.B 318 (1993) 347 [INSPIRE]. ADS Google Scholar
M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys.B 453 (1995) 17 [hep-ph/9504378] [INSPIRE]. ADS Google Scholar
S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role of squark loops, Phys. Rev. Lett.77 (1996) 16 [hep-ph/9603423] [INSPIRE]. ADS Google Scholar
M. Muhlleitner and M. Spira, Higgs Boson Production via Gluon Fusion: Squark Loops at NLO QCD, Nucl. Phys.B 790 (2008) 1 [hep-ph/0612254] [INSPIRE]. ADS Google Scholar
LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].