- G. Passarino, NLO Inspired Effective Lagrangians for Higgs Physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].
ADS MATH Google Scholar
- G. Passarino and M. Trott, The Standard Model Effective Field Theory and Next to Leading Order, arXiv:1610.08356 [INSPIRE].
- G. Passarino, XEFT, the challenging path up the hill: dim = 6 and dim = 8, arXiv:1901.04177 [INSPIRE].
- A. David and G. Passarino, Through precision straits to next standard model heights, Rev. Phys. 1 (2016) 13 [arXiv:1510.00414] [INSPIRE].
Google Scholar
- M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].
ADS MathSciNet MATH Google Scholar
- S. Dawson and P.P. Giardino, Electroweak and QCD corrections to Z and W pole observables in the standard model EFT, Phys. Rev. D 101 (2020) 013001 [arXiv:1909.02000] [INSPIRE].
ADS Google Scholar
- R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
ADS MathSciNet MATH Google Scholar
- C.W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].
ADS Google Scholar
- H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete Set of Dimension-8 Operators in the Standard Model Effective Field Theory, arXiv:2005.00008 [INSPIRE].
- A. Helset, A. Martin and M. Trott, The Geometric Standard Model Effective Field Theory, JHEP 03 (2020) 163 [arXiv:2001.01453] [INSPIRE].
ADS MathSciNet Google Scholar
- G.A. Vilkovisky, The Unique Effective Action in Quantum Field Theory, Nucl. Phys. B 234 (1984) 125 [INSPIRE].
ADS MathSciNet Google Scholar
- C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].
ADS MATH Google Scholar
- R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].
ADS MATH Google Scholar
- R. Alonso, E.E. Jenkins and A.V. Manohar, σ-models with Negative Curvature, Phys. Lett. B 756 (2016) 358 [arXiv:1602.00706] [INSPIRE].
ADS MATH Google Scholar
- R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].
ADS MathSciNet Google Scholar
- A. Helset, M. Paraskevas and M. Trott, Gauge fixing the Standard Model Effective Field Theory, Phys. Rev. Lett. 120 (2018) 251801 [arXiv:1803.08001] [INSPIRE].
ADS Google Scholar
- T. Corbett, A. Helset and M. Trott, Ward Identities for the Standard Model Effective Field Theory, Phys. Rev. D 101 (2020) 013005 [arXiv:1909.08470] [INSPIRE].
ADS MathSciNet Google Scholar
- I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].
ADS MathSciNet Google Scholar
- B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
ADS MATH Google Scholar
- C. Hays, A. Martin, V. Sanz and J. Setford, On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP 02 (2019) 123 [arXiv:1808.00442] [INSPIRE].
ADS MathSciNet Google Scholar
- R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
ADS Google Scholar
- J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].
ADS Google Scholar
- M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].
Google Scholar
- L. Bergstrom and G. Hulth, Induced Higgs Couplings to Neutral Bosons in e+ e − Collisions, Nucl. Phys. B 259 (1985) 137 [Erratum ibid. 276 (1986) 744] [INSPIRE].
- R.N. Cahn, M.S. Chanowitz and N. Fleishon, Higgs Particle Production by Z —> H Gamma, Phys. Lett. B 82 (1979) 113 [INSPIRE].
ADS Google Scholar
- A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].
ADS Google Scholar
- I. Brivio and M. Trott, Scheming in the SMEFT. . . and a reparameterization invariance!, JHEP 07 (2017) 148 [Addendum ibid. 05 (2018) 136] [arXiv:1701.06424] [INSPIRE].
- B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].
ADS Google Scholar
- L. Berthier and M. Trott, Towards consistent Electroweak Precision Data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].
ADS Google Scholar
- L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective Field Theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].
ADS Google Scholar
- M. Bjørn and M. Trott, Interpreting W mass measurements in the SMEFT, Phys. Lett. B 762 (2016) 426 [arXiv:1606.06502] [INSPIRE].
ADS Google Scholar
- L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].
ADS Google Scholar
- I. Brivio, T. Corbett and M. Trott, The Higgs width in the SMEFT, JHEP 10 (2019) 056 [arXiv:1906.06949] [INSPIRE].
ADS MathSciNet Google Scholar
- C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(h → γγ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].
ADS Google Scholar
- C. Hartmann and M. Trott, Higgs Decay to Two Photons at One Loop in the Standard Model Effective Field Theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].
ADS Google Scholar
- A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, The decay h → γγ in the Standard-Model Effective Field Theory, JHEP 08 (2018) 103 [arXiv:1805.00302] [INSPIRE].
ADS Google Scholar
- S. Dawson and P.P. Giardino, Electroweak corrections to Higgs boson decays to γγ and W + W − in standard model EFT, Phys. Rev. D 98 (2018) 095005 [arXiv:1807.11504] [INSPIRE].
ADS Google Scholar
- S. Dawson and P.P. Giardino, Higgs decays to ZZ and Zγ in the standard model effective field theory: An NLO analysis, Phys. Rev. D 97 (2018) 093003 [arXiv:1801.01136] [INSPIRE].
ADS Google Scholar
- A. Dedes, K. Suxho and L. Trifyllis, The decay h → Zγ in the Standard-Model Effective Field Theory, JHEP 06 (2019) 115 [arXiv:1903.12046] [INSPIRE].
ADS Google Scholar
- C. Hartmann, W. Shepherd and M. Trott, The Z decay width in the SMEFT: y t and λ corrections at one loop, JHEP 03 (2017) 060 [arXiv:1611.09879] [INSPIRE].
ADS Google Scholar
- CDF, D0 collaborations, Combination of CDF and D0 W -Boson Mass Measurements, Phys. Rev. D 88 (2013) 052018 [arXiv:1307.7627] [INSPIRE].
- Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
- ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
- P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA Recommended Values of the Fundamental Physical Constants: 2010, Rev. Mod. Phys. 84 (2012) 1527 [arXiv:1203.5425] [INSPIRE].
ADS Google Scholar
- ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s} \) = 7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
- T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].
ADS Google Scholar
- K. Symanzik, Infrared singularities and small distance behavior analysis, Commun. Math. Phys. 34 (1973) 7 [INSPIRE].
ADS Google Scholar
- C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
ADS Google Scholar
- E.E. Jenkins, A.V. Manohar and M. Trott, On Gauge Invariance and Minimal Coupling, JHEP 09 (2013) 063 [arXiv:1305.0017] [INSPIRE].
ADS Google Scholar
- N. Craig, M. Jiang, Y.-Y. Li and D. Sutherland, Loops and Trees in Generic EFTs, JHEP 08 (2020) 086 [arXiv:2001.00017] [INSPIRE].
ADS MathSciNet Google Scholar
- B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].
ADS MathSciNet MATH Google Scholar
- L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].
ADS MathSciNet Google Scholar
- L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, JHEP 02 (2016) 081 [arXiv:1510.00372] [INSPIRE].
ADS MathSciNet MATH Google Scholar
- B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys. 347 (2016) 363 [arXiv:1507.07240] [INSPIRE].
ADS MathSciNet MATH Google Scholar
- B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485,. . . : Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [Erratum ibid. 09 (2019) 019] [arXiv:1512.03433] [INSPIRE].
- G. Elgaard-Clausen and M. Trott, On expansions in neutrino effective field theory, JHEP 11 (2017) 088 [arXiv:1703.04415] [INSPIRE].
ADS MathSciNet MATH Google Scholar
- ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb _−_1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
- R.F. Dashen, E.E. Jenkins and A.V. Manohar, The 1/N(c) expansion for baryons, Phys. Rev. D 49 (1994) 4713 [Erratum ibid. 51 (1995) 2489] [hep-ph/9310379] [INSPIRE].
- R.F. Dashen, E.E. Jenkins and A.V. Manohar, Spin flavor structure of large N c baryons, Phys. Rev. D 51 (1995) 3697 [hep-ph/9411234] [INSPIRE].
ADS Google Scholar
- I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].
ADS Google Scholar