On the future of Higgs, electroweak and diboson measurements at lepton colliders (original) (raw)

References

  1. T. Taylor and D. Treille, The Large Electron Positron Collider (LEP): Probing the Standard Model, Adv. Ser. Direct. High Energy Phys.27 (2017) 217 [INSPIRE].
  2. J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, arXiv:1905.03764 [INSPIRE].
  3. A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP01 (2014) 151 [arXiv:1308.2803] [INSPIRE].
  4. R.S. Gupta, A. Pomarol and F. Riva, BSM Primary Effects, Phys. Rev.D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].
  5. A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett.116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].
  6. S. Boselli, R. Hunter and A. Mitov, Prospects for the determination of the top-quark Yukawa coupling at future e +e colliders, J. Phys.G 46 (2019) 095005 [arXiv:1805.12027] [INSPIRE].
  7. G. Durieux, J. Gu, E. Vryonidou and C. Zhang, Probing top-quark couplings indirectly at Higgs factories, Chin. Phys.C 42 (2018) 123107 [arXiv:1809.03520] [INSPIRE].
  8. E. Vryonidou and C. Zhang, Dimension-six electroweak top-loop effects in Higgs production and decay, JHEP08 (2018) 036 [arXiv:1804.09766] [INSPIRE].
  9. G. Durieux, M. Perelló, M. Vos and C. Zhang, Global and optimal probes for the top-quark effective field theory at future lepton colliders, JHEP10 (2018) 168 [arXiv:1807.02121] [INSPIRE].
  10. A. Falkowski, Higgs Basis: Proposal for an EFT basis choice for LHC HXSWG, LHCHXSWG-INT-2015-001 (2015).
  11. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
  12. J. Ellis and T. You, Sensitivities of Prospective Future e +e Colliders to Decoupled New Physics, JHEP03 (2016) 089 [arXiv:1510.04561] [INSPIRE].
  13. J. Ellis, P. Roloff, V. Sanz and T. You, _Dimension-_6 Operator Analysis of the CLIC Sensitivity to New Physics, JHEP05 (2017) 096 [arXiv:1701.04804] [INSPIRE].
  14. G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP09 (2017) 014 [arXiv:1704.02333] [INSPIRE].
  15. T. Barklow et al., Improved Formalism for Precision Higgs Coupling Fits, Phys. Rev.D 97 (2018) 053003 [arXiv:1708.08912] [INSPIRE].
  16. T. Barklow, K. Fujii, S. Jung, M.E. Peskin and J. Tian, Model-Independent Determination of the Triple Higgs Coupling at e +e Colliders, Phys. Rev.D 97 (2018) 053004 [arXiv:1708.09079] [INSPIRE].
  17. J. de Blas et al., Electroweak precision constraints at present and future colliders, PoS(ICHEP2016)690 (2017) [arXiv:1611.05354] [INSPIRE].
  18. J. de Blas et al., The Global Electroweak and Higgs Fits in the LHC era, PoS(EPS-HEP2017)467 (2017) [arXiv:1710.05402] [INSPIRE].
  19. S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP02 (2018) 178 [arXiv:1711.03978] [INSPIRE].
  20. W.H. Chiu, S.C. Leung, T. Liu, K.-F. Lyu and L.-T. Wang, Probing 6_D operators at future e_ e +colliders, JHEP05 (2018) 081 [arXiv:1711.04046] [INSPIRE].
  21. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP06 (2018) 146 [arXiv:1803.03252] [INSPIRE].
  22. E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. Éboli and M.C. Gonzalez-Garcia, Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data, Phys. Rev.D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].
  23. A. Biekötter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, SciPost Phys.6 (2019) 064 [arXiv:1812.07587] [INSPIRE].
  24. M. McCullough, An Indirect Model-Dependent Probe of the Higgs Self-Coupling, Phys. Rev.D 90 (2014) 015001 [Erratum ibid.D 92 (2015) 039903] [arXiv:1312.3322] [INSPIRE].
  25. G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP12 (2016) 080 [arXiv:1607.04251] [INSPIRE].
  26. S. Di Vita, C. Grojean, G. Panico, M. Riembau and T. Vantalon, A global view on the Higgs self-coupling, JHEP09 (2017) 069 [arXiv:1704.01953] [INSPIRE].
  27. F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC, Eur. Phys. J.C 77 (2017) 887 [arXiv:1709.08649] [INSPIRE].
  28. G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys.B 880 (2014) 552 [Corrigendum ibid.B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
  29. I. Brivio et al., Disentangling a dynamical Higgs, JHEP03 (2014) 024 [arXiv:1311.1823] [INSPIRE].
  30. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  31. A. Falkowski and R. Rattazzi, Which EFT, JHEP10 (2019) 255 [arXiv:1902.05936] [INSPIRE].
  32. F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP09 (2000) 011 [hep-ph/0007316] [INSPIRE].
  33. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev.D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].
  34. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP09 (2010) 033 [arXiv:1005.3998] [INSPIRE].
  35. B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP01 (2016) 023 [arXiv:1412.1837] [INSPIRE].
  36. J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable Effects of General New Scalar Particles, JHEP04 (2015) 078 [arXiv:1412.8480] [INSPIRE].
  37. A. Drozd, J. Ellis, J. Quevillon and T. You, The Universal One-Loop Effective Action, JHEP03 (2016) 180 [arXiv:1512.03003] [INSPIRE].
  38. F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after matching, Eur. Phys. J.C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].
  39. S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the Universal One-Loop Effective Action, Phys. Lett.B 762 (2016) 166 [arXiv:1604.02445] [INSPIRE].
  40. J. Fuentes-Martin, J. Portoles and P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework, JHEP09 (2016) 156 [arXiv:1607.02142] [INSPIRE].
  41. Z. Zhang, Covariant diagrams for one-loop matching, JHEP05 (2017) 152 [arXiv:1610.00710] [INSPIRE].
  42. S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Extending the Universal One-Loop Effective Action: Heavy-Light Coefficients, JHEP08 (2017) 054 [arXiv:1706.07765] [INSPIRE].
  43. J. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP03 (2018) 109 [arXiv:1711.10391] [INSPIRE].
  44. J. Ellis, S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing the Scale of New Physics in the Z Zγ Coupling at e +e Colliders, arXiv:1902.06631 [INSPIRE].
  45. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
  46. A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana87 (2016) 39 [arXiv:1505.00046] [INSPIRE].
  47. K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e +e → W +W , Nucl. Phys.B 282 (1987) 253 [INSPIRE].
  48. A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev.D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
  49. M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett.B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].
  50. S. Dawson, P.P. Giardino and A. Ismail, Standard model EFT and the Drell-Yan process at high energy, Phys. Rev.D 99 (2019) 035044 [arXiv:1811.12260] [INSPIRE].
  51. HL/HE WG2 Group, Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134 [INSPIRE].
  52. C. Zhang, N. Greiner and S. Willenbrock, Constraints on Non-standard Top Quark Couplings, Phys. Rev.D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].
  53. J. de Blas, M. Chala and J. Santiago, Renormalization Group Constraints on New Top Interactions from Electroweak Precision Data, JHEP09 (2015) 189 [arXiv:1507.00757] [INSPIRE].
  54. F. Feruglio, P. Paradisi and A. Pattori, On the Importance of Electroweak Corrections for B Anomalies, JHEP09 (2017) 061 [arXiv:1705.00929] [INSPIRE].
  55. J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous t \( \overline{t} \)Z interactions with rare meson decays, JHEP02 (2015) 141 [arXiv:1408.0792] [INSPIRE].
  56. F. Feruglio, P. Paradisi and A. Pattori, Revisiting Lepton Flavor Universality in B Decays, Phys. Rev. Lett.118 (2017) 011801 [arXiv:1606.00524] [INSPIRE].
  57. J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W +W production at the LHC including fermionic operators, Phys. Rev.D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].
  58. J. Baglio, S. Dawson and I.M. Lewis, NLO effects in EFT fits to W +W production at the LHC, Phys. Rev.D 99 (2019) 035029 [arXiv:1812.00214] [INSPIRE].
  59. S. Dawson and P.P. Giardino, Electroweak and QCD Corrections to Z and W pole observables in the SMEFT, arXiv:1909.02000 [INSPIRE].
  60. ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  61. Particle Data Group, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  62. ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group, Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept.532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  63. R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP02 (2018) 111 [arXiv:1712.01310] [INSPIRE].
  64. S. Banerjee, C. Englert, R.S. Gupta and M. Spannowsky, Probing Electroweak Precision Physics via boosted Higgs-strahlung at the LHC, Phys. Rev.D 98 (2018) 095012 [arXiv:1807.01796] [INSPIRE].
  65. R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP07 (2016) 144 [arXiv:1604.06444] [INSPIRE].
  66. C. Grojean, M. Montull and M. Riembau, Diboson at the LHC vs. LEP, JHEP03 (2019) 020 [arXiv:1810.05149] [INSPIRE].
  67. CEPC Study Group, CEPC Conceptual Design Report: Volume 2 — Physics & Detector, arXiv:1811.10545 [INSPIRE].
  68. FCC collaboration, FCC Physics Opportunities, Eur. Phys. J.C 79 (2019) 474 [INSPIRE].
  69. FCC collaboration, FCC-ee: The Lepton Collider, Eur. Phys. J. Spec. Top.228 (2019) 261 [INSPIRE].
  70. P. Bambade et al., The International Linear Collider: A Global Project, arXiv:1903.01629 [INSPIRE].
  71. D.M. Asner et al., ILC Higgs White Paper, in proceedings of the 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013, arXiv:1310.0763 [INSPIRE].
  72. J. de Blas et al., The CLIC Potential for New Physics, arXiv:1812.02093 [INSPIRE].
  73. Z. Zhang, Time to Go Beyond Triple-Gauge-Boson-Coupling Interpretation of W Pair Production, Phys. Rev. Lett.118 (2017) 011803 [arXiv:1610.01618] [INSPIRE].
  74. M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e +e → W +W , Z. Phys.C 62 (1994) 397 [INSPIRE].
  75. OPAL collaboration, Measurement of charged current triple gauge boson couplings using W pairs at LEP, Eur. Phys. J.C 33 (2004) 463 [hep-ex/0308067] [INSPIRE].
  76. L3 collaboration, Measurement of triple gauge boson couplings of the W boson at LEP, Phys. Lett.B 586 (2004) 151 [hep-ex/0402036] [INSPIRE].
  77. ALEPH collaboration, Improved measurement of the triple gauge-boson couplings γWW and Z W W in e +e collisions, Phys. Lett.B 614 (2005) 7 [INSPIRE].
  78. DELPHI collaboration, Measurements of CP-conserving Trilinear Gauge Boson Couplings WWV (V ≡ γ, Z ) in e +e Collisions at LEP2, Eur. Phys. J.C 66 (2010) 35 [arXiv:1002.0752] [INSPIRE].
  79. I. Marchesini, Triple gauge couplings and polarization at the ILC and leakage in a highly granular calorimeter, Ph.D. Thesis, Hamburg University, Hamburg Germany (2011) and online at http://www-library.desy.de/cgi-bin/showprep.pl?ENum=thesis11-044.
  80. M. Beneke, D. Boito and Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of H → Z_ℓ + ℓ_− and e +e → H Z, JHEP11 (2014) 028 [arXiv:1406.1361] [INSPIRE].
  81. N. Craig, J. Gu, Z. Liu and K. Wang, Beyond Higgs Couplings: Probing the Higgs with Angular Observables at Future e +e Colliders, JHEP03 (2016) 050 [arXiv:1512.06877] [INSPIRE].
  82. K. Hagiwara, S. Ishihara, J. Kamoshita and B.A. Kniehl, Prospects of measuring general Higgs couplings at e +e linear colliders, Eur. Phys. J.C 14 (2000) 457 [hep-ph/0002043] [INSPIRE].
  83. F. An et al., Precision Higgs physics at the CEPC, Chin. Phys.C 43 (2019) 043002 [arXiv:1810.09037] [INSPIRE].
  84. J. de Blas et al., HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models, arXiv:1910.14012 [INSPIRE].
  85. M. Karliner, M. Low, J.L. Rosner and L.-T. Wang, Radiative return capabilities of a high-energy, high-luminosity e +e collider, Phys. Rev.D 92 (2015) 035010 [arXiv:1503.07209] [INSPIRE].
  86. T. Barklow, J. Strube, T. Ueno, H. Yamamoto and R. Yonamine, Measurment of ALR in e +e → Zγ at the 250 GeV ILC, in proceedings of the International Workshop on Future Linear Colliders (LCWS 2018), Arlington, Texas, U.S.A., 22–26 October 2018 and online at https://agenda.linearcollider.org/event/7889/contributions/42503.
  87. HL-LHC collaboration and HE-LHC Working Group, Standard Model Physics at the HL-LHC and HE-LHC, arXiv:1902.04070 [INSPIRE].
  88. H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  89. K. Fujii et al., Physics Case for the 250 GeV Stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].
  90. K. Fujii et al., The role of positron polarization for the inital 250 GeV stage of the International Linear Collider, arXiv:1801.02840 [INSPIRE].
  91. M.I. Krzywinski et al., Circos: An information aesthetic for comparative genomics, Genome Res.19 (2009) 1639.
  92. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
  93. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  94. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.D 48 (1993) 2182 [INSPIRE].
  95. D. Atwood and A. Soni, Analysis for magnetic moment and electric dipole moment form-factors of the top quark via e +e → t \( \overline{t} \), Phys. Rev.D 45 (1992) 2405 [INSPIRE].
  96. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  97. A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J.C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].
  98. A. Robson and P. Roloff, Updated CLIC luminosity staging baseline and Higgs coupling prospects, arXiv:1812.01644 [INSPIRE].
  99. CLICdp and CLIC collaborations, The Compact Linear Collider (CLIC) — 2018 Summary Report, CERN Yellow Rep. Monogr.1802 (2018) 1 [arXiv:1812.06018] [INSPIRE].
  100. ILC collaboration, The International Linear Collider. A Global Project, arXiv:1901.09829 [INSPIRE].
  101. SLD collaboration, First direct measurement of the parity violating coupling of the Z 0_to the s quark_, Phys. Rev. Lett.85 (2000) 5059 [hep-ex/0006019] [INSPIRE].
  102. LCC Physics Working Group, Tests of the Standard Model at the International Linear Collider, arXiv:1908.11299 [INSPIRE].
  103. HL/HE-LHC Physics Working Group 2, Guidelines for extrapolation of CMS&ATLAS LHC/HL-LHC couplings projections to HE-LHC, (2019) https://twiki.cern.ch/twiki/bin/view/LHCPhysics/GuidelinesCouplingProjections2018.

Download references