- Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417
CAS Google Scholar
- Choi JS, Lee EJ, Jang HS et al (2001) New cationic liposomes for gene transfer into mammalian cells with high efficiency and low toxicity. Bioconjug Chem 12:108–113
Article CAS PubMed Google Scholar
- Dass CR, Su T (2000) Delivery of lipoplexes for genotherapy of solid tumours: role of vascular endothelial cells. J Pharm Pharmacol 52:1301–1317
CAS PubMed Google Scholar
- Wong FMP, Reimer DL, Bally MB (1996) Cationic lipid binding to DNA: characterization of complex formation. Biochemistry 35:5756–5763
Article CAS PubMed Google Scholar
- Liu F, Huang L (2002) Development of non-viral vectors for systemic gene delivery. J Control Release 78:259–266
Article CAS PubMed Google Scholar
- Felgner JH, Kumar R, Sridhar A et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561
PubMed Google Scholar
- Hafez IM, Maurer N, Cullis PR (2001) On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8:1188–1196
Article CAS PubMed Google Scholar
- Zuidam NJ, Barenholz Y (1998) Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta 1368:115–128
Article CAS PubMed Google Scholar
- Dass CR (2002) Vehicles for oligonucleotide delivery: therapeutic applicability against tumors. J Pharm Pharmacol 54:3–27
Article CAS PubMed Google Scholar
- Lasic DD, Pearlman R (1996) Liposomes and lipidic particles in gene therapy. In: Rosoff M (ed) Vesicles. Dekker, New York, 477–489
- Mui B, Ahkong QF, Chow L et al (2000) Membrane perturbation and the mechanism of lipid-mediated transfer of DNA into cells. Biochim Biophys Acta 1467:281–292
Article CAS PubMed Google Scholar
- Ren T, Song YK, Zhang G et al (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther 7:764–768
CAS PubMed Google Scholar
- Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295
Article CAS PubMed Google Scholar
- Dass CR, Walker TL, Burton MA (2002) Liposomes containing cationic dimethyl dioctadecyl ammonium bromide: formulation, quality control, and lipofection efficiency. Drug Deliv 9:11–18
Article CAS PubMed Google Scholar
- Wheeler CJ, Felgner PL, Tsai YJ et al (1996) A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc Natl Acad Sci USA 93:11454–11459
Article CAS PubMed Google Scholar
- Dass CR, Walker TL, Kalle WHJ et al (2000) A microsphere-lipoplex (microplex) vector for targeted gene therapy of cancer. II. In vivo biodistribution study in a solid tumor model. Drug Deliv 7:15–20
CAS PubMed Google Scholar
- Dass CR, Burton MA (2002) A model for evaluating selective delivery of plasmid DNA to tumours via the vasculature. Cancer Biother Radiopharm 17:501–505
Article CAS PubMed Google Scholar
- Dass CR, Burton MA (2003) Modified microplex vector enhances transfection of cells in culture while maintaining tumour-selective gene delivery in vivo. J Pharm Pharmacol 55:19–25
CAS PubMed Google Scholar
- Cao A, Briane D, Coudert R et al (2000) Delivery and pathway in MCF7 cells of DNA vectorized by cationic liposomes derived from cholesterol. Antisense Nucleic Acid Drug Dev 10:369–380
CAS PubMed Google Scholar
- Bell PC, Bergsma M, Dolbnya IP et al (2003) Transfection mediated by gemini surfactants: engineered escape from the endosomal compartment. J Am Chem Soc 125:1551–1558
Article CAS PubMed Google Scholar
- Friend DS, Papahadjopoulos D, Debs R (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1278:41–50
Article CAS PubMed Google Scholar
- Lin AJ, Slack NL, Ahmad A et al (2003) Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome-DNA complexes. Biophys J 84:3307–3316
CAS PubMed Google Scholar
- Kreiss P, Cameron B, Rangara R et al (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27:3792–3798
Article CAS PubMed Google Scholar
- Wu-Pong S, Weiss TL, Hunt CA (1992) Antisense c-myc oligodeoxyribonucleotide cellular uptake. Pharm Res 9:1010–1017
Article CAS PubMed Google Scholar
- Dass CR, Saravolac EG, Li Y et al (2002) Cellular uptake, distribution, and stability of 10–23 deoxyribozymes. Antisense Nucleic Acid Drug Dev 12:289–299
Article CAS PubMed Google Scholar
- Bielinska A, Kukowska-Latallo JF, Johnson J et al (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24:2176–2182
Article CAS PubMed Google Scholar
- Lambert G, Fattal E, Brehier A et al (1998) Effect of polyisobutylcyanoacrylate nanoparticles and lipofectin loaded with oligonucleotides on cell viability and PKC alpha neosynthesis in HepG2 cells. Biochimie 80:969–976
Article CAS PubMed Google Scholar
- Xu M, Chen QR, Kumar D et al (1998) In vivo gene therapy with a cationic polymer markedly enhances the antitumor activity of antiangiogenic genes. Mol Genet Metab 64:193–197
Article CAS PubMed Google Scholar
- Lappalainen K, Jskeläinen I, Syrjänen J et al (1994) Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm Res 11:1127–1131
Article CAS PubMed Google Scholar
- Aberle AM, Tablin F, Walker NJ et al (1998) A novel tetraester construct that reduces cationic lipid-associated cytotoxicity. Implications for the onset of cytotoxicity. Biochemistry 37:6533–6540
Article CAS PubMed Google Scholar
- Senior JH, Trimble KR, Maskiewicz R (1991) Interaction of positively-charged liposomes with blood: implications for their application in vivo. Biochim Biophys Acta 1070:173–179
CAS PubMed Google Scholar
- Sakurai F, Nishioka T, Saito H et al (2001) Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 8:677–686
Article CAS PubMed Google Scholar
- Ferencick M, Lacko I, Devinsky F (1990) Immunomodulatory activity of some amphiphilic compounds. Pharmazie 45:695–696
PubMed Google Scholar
- Jahnova E, Ferencick M, Nyulassy S et al (1994) Amphiphilic detergents inhibit production of IgG and IgM by human peripheral blood mononuclear cells. Immunol Lett 39:71–75
Article Google Scholar
- Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of some liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329:345–356
Article CAS PubMed Google Scholar
- Pleyer U, Groth D, Hinz B et al (2001) Efficiency and toxicity of liposome-mediated gene transfer to corneal epithelial cells. Exp Eye Res 73:1–7
Article CAS PubMed Google Scholar
- Adams DO, Hamilton TA (1977) The cell biology of macrophage activation. Annu Rev Immunol 2:283–318
Article Google Scholar
- Taniguchi K, Yamamoto Y, Itakura K et al (1988) Assessment of ocular irritability of liposome preparations. J Pharmacobiodyn 11:607–611
CAS PubMed Google Scholar
- Chonn A, Cullis P, Devine D (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146:4234–4241
CAS PubMed Google Scholar
- Nita I, Ghivizzani SC, Galea-Lauri J et al (1996) Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo. Arthritis Rheum 39:820–828
CAS PubMed Google Scholar
- Uyechi LS, Gagne L, Thurston G et al (2001) Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther 8:828–836
Article CAS PubMed Google Scholar
- Malone RW (1995) Toxicology of non-viral gene transfer. In: Walsh B (ed) Non-viral genetic therapeutics: advances, challenges and applications for self-assembling systems. IBC Biomedical Library Series, Boston, 4.1.1–4.1.26
- Freimark BD, Blezinger HP, Florack VJ et al (1998) Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid:cationic lipid complexes. J Immunol 160:4580–4586
CAS PubMed Google Scholar
- Eliyahu H, Servel N, Domb AJ et al (2002) Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Ther 9:850–858
Article CAS PubMed Google Scholar
- Barron LG, Meyer KB, Szoka FC Jr (1998) Effects of complement depletion on the pharmacokinetics and gene delivery mediated by cationic lipid-DNA complexes. Hum Gene Ther 9:315–923
CAS PubMed Google Scholar
- Litzinger DC, Brown JM, Wala I et al (1996) Fate of cationic liposomes and their complex with oligonucleotide in vivo. Biochim Biophys Acta 1281:139–149
Article CAS PubMed Google Scholar
- Filion MC, Phillips NC (1997) Anti-inflammatory activity of cationic lipids. Br J Pharmacol 122:551–557
CAS PubMed Google Scholar
- Wright MJ, Rosenthal E, Stewart L et al (1998) β-Galactosidase staining following intracoronary infusion of cationic liposomes in the in vivo rabbit heart is produced by microinfarction rather than effective gene transfer: a cautionary tale. Gene Ther 5:301–308
Article CAS PubMed Google Scholar
- Filion MC, Phillips NC (1998) Major limitations in the use of cationic liposomes for DNA delivery. Int J Pharm 162:159–170
Article CAS Google Scholar
- Madry H, Reszka R, Bohlender J et al (2001) Efficacy of cationic liposome-mediated gene transfer to mesangial cells in vitro and in vivo. J Mol Med 79:184–189
Article CAS PubMed Google Scholar
- Mohr L, Yoon SK, Eastman SJ et al (2001) Cationic liposome-mediated gene delivery to the liver and to hepatocellular carcinomas in mice. Hum Gene Ther 12:799–809
Google Scholar
- Dass CR (1998) Targeted delivery of DNA for therapy of cancer. Thesis, Charles Sturt University, Wagga Wagga, Australia
- Minchin RF, Carpenter D, Orr RJ (2001) Polyinosinic acid and polycationic liposomes attenuate the hepatic clearance of circulating plasmid DNA. J Pharmacol Exp Ther 296:1006–1012
CAS PubMed Google Scholar
- Dass CR (2002) Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumour gene therapy. Int J Pharm 241:1–25
Article CAS PubMed Google Scholar
- Heyes JA, Niculescu-Duvaz D, Cooper RG et al (2002) Synthesis of novel cationic lipids: effect of structural modification on the efficiency of gene transfer. J Med Chem 45:99–114
Article CAS PubMed Google Scholar
- Lee ER, Marshall J, Siegel CS et al (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7:1701–1717
CAS PubMed Google Scholar
- Bennett MJ, Aberle AM, Balasubramaniam S et al (1997) Cationic lipid-mediated gene delivery to murine lung: correlation of lipid hydration with in vivo transfection activity. J Med Chem 40:4069–4078
Article CAS PubMed Google Scholar
- Balasubramaniam RP, Bennett MJ, Aberle AM et al (1996) Structural and functional analysis of cationic transfection lipids: the hydrophobic domain. Gene Ther 3:163–3172
CAS PubMed Google Scholar
- Floch V, Loisel S, Guenin E et al (2000) Cation substitution in cationic phosphonolipids: a new concept to improve transfection activity and decrease cellular toxicity. J Med Chem 43:4617–4628
Article CAS PubMed Google Scholar
- van der Woude I, Wagenaar A, Meekel AA et al (1997) Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc Natl Acad Sci USA 94:1160–1165
Article PubMed Google Scholar
- Tang F, Hughes JA (1999) Use of dithiodiglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNA in vitro. Bioconjug Chem 10:791–796
Article CAS PubMed Google Scholar
- Leventis R, Silvius JR (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1023:124–132
Article CAS PubMed Google Scholar
- Farhood H, Bortega R, Epand RM et al (1992) Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim Biophys Acta 1368:276–288
Google Scholar
- Ghosh YK, Visweswariah SS, Bhattacharya S (2000) Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency. FEBS Lett 473:341–344
Article CAS PubMed Google Scholar
- Tang F, Hughes JA (1999) Synthesis of a single-tailed cationic lipid and investigation of its transfection. J Control Release 62:345–358
Article CAS PubMed Google Scholar
- Ferrari ME, Rusalov D, Enas J et al (2001) Trends in lipoplex physical properties dependent on cationic lipid structure, vehicle and complexation procedure do not correlate with biological activity. Nucleic Acids Res 29:1539–1548
Article CAS PubMed Google Scholar
- Floch V, Delepine P, Guillaume C et al (2000) Systemic administration of cationic phosphonolipid/DNA complexes and the relationship between formulation and lung transfection efficiency. Biochim Biophys Acta 1464:95–103
Article CAS PubMed Google Scholar
- Schuele RK, St. George JA, Bagley RG et al (1997) Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther 8:689–707
PubMed Google Scholar
- Li S, Wu SP, Whitmore M et al (1999) Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol Lung Cell Mol Physiol 20 276:L796–L804
CAS Google Scholar
- Dass CR, Burton MA (1999) Lipoplexes and tumors. J Pharm Pharmacol 51:755–770
CAS PubMed Google Scholar
- Ozmen L, Pericin M, Hakimi J et al (1994) Interleukin 12, interferon γ, and tumor necrosis factor α are the key cytokines of the generalized Shwartzmann reaction. J Exp Med 180:907–915
CAS PubMed Google Scholar
- Sparwasser T, Miethke T, Lipford G et al (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-α-mediated shock. Eur J Immunol 27:1671–1679
CAS PubMed Google Scholar
- Meyer O, Schugart K, Pavirani A et al (1999) Multiple systemic expression of human interferon-β in mice can be achieved upon repeated administration of optimized pcTG90-lipoplex. Gene Ther 7:1606–1611
Article Google Scholar
- Yew NS, Wang KX, Przbylska M et al (1998) Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther 10:223–234
Article Google Scholar
- Alton EWF, Geddes W, Gill DM et al (1998) Towards gene therapy for cystic fibrosis: a clinical progress report. Gene Ther 5:291–292
CAS PubMed Google Scholar
- Schuele RK (2000) The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev 44:119–134
PubMed Google Scholar
- Yew NS, Zhao H, Wu IH et al (2000) Reduced inflammatory response to plasmid vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 1:255–262
Article CAS PubMed Google Scholar
- Tan Y, Li S, Pitt BR et al (1999) The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 10:2153–2161
Article CAS PubMed Google Scholar
- Qin L, Ding Y, Pahud DR et al (1997) Promoter attenuation in gene therapy: interferon-γ and tumor necrosis factor-α inhibit transgene expression. Hum Gene Ther 8:2019–2029
CAS PubMed Google Scholar
- Dow SW, Fradkin LG, Liggitt DH et al (1999) Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 163:1552–1561
CAS PubMed Google Scholar
- Whitmore M, Li S, Huang L (1999) LPD lipoployplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther 6:1867–1875
CAS PubMed Google Scholar
- Bramson JL, Bodner CA, Graham RW (2000) Activation of host tumoral responses by cationic lipid/DNA complexes. Cancer Gene Ther 7:353–359
CAS PubMed Google Scholar
- Loisel S, Le Gall C, Doucet L et al (2001) Contribution of plasmid DNA to hepatotoxicity after systemic administration of lipoplexes. Hum Gene Ther 12:685–696
Article CAS PubMed Google Scholar
- Parker SE, Khatibi S, Margalith M et al (1996) Plasmid DNA gene therapy: studies with the human interleukin-12 gene in tumor cells in vitro and in the murine B16 model in vivo. Cancer Gene Ther 3:175–185
CAS PubMed Google Scholar
- Blezinger P, Freimark BD, Matar M et al (1999) Intratracheal administration of interleukin 12 plasmid-cationic lipid complexes inhibits murine lung metastases. Hum Gene Ther 10:723–731
CAS PubMed Google Scholar
- Dow SW, Elmslie RE, Fradkin LG et al (1999) Intravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastases. Hum Gene Ther 10:2961–2972
Article CAS PubMed Google Scholar
- Lanuti M, Rudginsky S, Force SD et al (2000) Cationic lipid:bacterial DNA complexes elicit adaptive cellular immunity in murine intraperitoneal models. Cancer Res 60:2955–2963
CAS PubMed Google Scholar
- Duda DG, Sunamura M, Lozonschi L et al (2000) Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res 60:1111–1116
CAS PubMed Google Scholar
- Strieter RM, Polverini PJ, Arenberg DA et al (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160
CAS PubMed Google Scholar
- Perrie Y, Frederik PM, Gregoriadis G (2001) Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine 19:3301–3310
Article CAS PubMed Google Scholar
- Reyes L, Hartikka J, Bozoukova V et al (2001) Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization. Vaccine 19:3778–3786
CAS PubMed Google Scholar
- Neckers LM, Kanekal M, Connell Y (1998) Non-antisense oligonucleotide approaches for experimental treatment of glioblastoma. Antisense Nucl Acid Drug Dev 8:177–179
CAS Google Scholar
- Mui B, Raney SG, Semple SC et al (2001) Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J Pharmacol Exp Ther 298:1185–1192
CAS PubMed Google Scholar
- Thurston G, McLean JW, Rizen M et al (1998) Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101:1401–1413
CAS PubMed Google Scholar
- Campbell RB, Fukumura D, Brown EB et al (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62:6831–6836
CAS PubMed Google Scholar
- Vincent S, DePace D, Finkelstein S (1988) Distribution of anionic sites on the capillary endothelium in an experimental brain tumour model. Microcirc Endothelium Lymphatics 4:45–67
CAS PubMed Google Scholar
- Mounkes LC, Zhong W, Cipres-Palacin G et al (1998) Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J Biol Chem 273:26164–26170
Article CAS PubMed Google Scholar
- Chang YS, di Tomaso E, McDonald DM et al (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613
Article CAS PubMed Google Scholar
- Bankston PW, Milici AJ (1983) A survey of the binding of polycationic ferritin in several fenestrated capillary beds: indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms. Microvasc Res 26:36–48
Article CAS PubMed Google Scholar
- Milici AJ, L’Hernault N, Palade GE (1985) Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56:709–717
CAS PubMed Google Scholar
- Kerbel RS, Klement G, Pritchard KI et al (2002) Continuous low-dose anti-angiogenic/ metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol 13:12–15
Google Scholar
- McLean JW, Fox EA, Baluk P et al (1997) Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am J Physiol 273:H387–H404
CAS PubMed Google Scholar
- Kunstfeld R, Wickenhauser G, Michaelis U et al (2003) Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J Invest Dermatol 120:476–482
Article CAS PubMed Google Scholar
- Aoki K, Yoshida T, Matsumoto N et al (1997) Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther 8:1105–1113
CAS PubMed Google Scholar
- Kikuchi A, Aoki Y, Sugaya S et al (1999) Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor. Hum Gene Ther 10:947–955
Article CAS PubMed Google Scholar
- Reddy JA, Abburi C, Hofland SJ et al (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9:1542–1550
Article CAS PubMed Google Scholar
- Kiyasu Y, Kaneshima S, Koga S (1981) Morphogenesis of peritoneal metastasis in human gastric cancer. Cancer Res 41:1236–1239
CAS PubMed Google Scholar
- Niedbala MJ, Crickard K, Bernacki RJ (1985) Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Exp Cell Res 160:499–513
CAS PubMed Google Scholar
- Parker SE, Ducharme S, Norman J et al (1997) Tissue distribution of the cytofectin component of a plasmid-DNA/cationic lipid complex following intravenous administration in mice. Hum Gene Ther 8:393–401
CAS PubMed Google Scholar
- Niven R, Pearlman R, Wedeking T et al (1998) Biodistribution of radiolabeled lipid-DNA complexes and DNA in mice. J Pharm Sci 87:1292–1299
Article CAS PubMed Google Scholar
- Audouy SA, de Leij LF, Hoekstra D et al (2002) In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 9:1599–1605
Article Google Scholar
- Ramesh R, Saeki T, Templeton NS et al (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 3:337–344
Article CAS PubMed Google Scholar
- Liu Y, Mounkes LC, Liggitt HD et al (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173
CAS PubMed Google Scholar
- Sakurai F, Terada T, Yasuda K et al (2002) The role of tissue macrophages in the induction of proinflammatory cytokine production following intravenous injection of lipoplexes. Gene Ther 9:1120–1126
Article CAS PubMed Google Scholar
- Rainov NG, Ikeda K, Qureshi NH et al (1999) Intraarterial delivery of adenovirus vectors and liposome-DNA complexes to experimental brain neoplasms. Hum Gene Ther 10:311–318
Article CAS PubMed Google Scholar
- Zhu N, Liggitt D, Liu Y et al (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261:209–211
CAS PubMed Google Scholar
- Templeton NS, Lasic DD, Frederik PM et al (1997) Improved DNA liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652
CAS PubMed Google Scholar
- Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380
CAS PubMed Google Scholar
- Arap W, Haedicke W, Bernasconi M et al (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 99:1527–1531
Article CAS PubMed Google Scholar
- Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, Huang L, Shu S, Gordon D, Chang AE (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 90:11307–11311
CAS PubMed Google Scholar
- Nabel EG, Yang Z, Muller D, Chang AE, Gao X, Huang L, Cho KJ, Nabel GJ (1994) Safety and toxicity of catheter gene delivery to the pulmonary vasculature in a patient with metastatic melanoma. Hum Gene Ther 5:1089–1094
CAS PubMed Google Scholar
- Sorscher EJ, Logan JJ, Frizzell RA, Lyrene RK, Bebok Z, Dong JY, Duvall MD, Felgner PL, Matalon S, Walker L et al. (1994) Gene therapy for cystic fibrosis using cationic liposome mediated gene transfer: a phase I trial of safety and efficacy in the nasal airway. Hum Gene Ther 5:1259–1277
CAS PubMed Google Scholar
- Xing X, Yujiao Chang J, Hung M (1998) Preclinical and clinical study of HER-2/neu-targeting cancer gene therapy. Adv Drug Deliv Rev 30:219–227
Article PubMed Google Scholar
- Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB, Weiden PL, Willey JS, Carey M, Branham DL, Payne JY, Tucker SD, Bartholomeusz C, Kilbourn RG, De Jager RL, Sneige N, Katz RL, Anklesaria P, Ibrahim NK, Murray JL, Theriault RL, Valero V, Gershenson DM, Bevers MW, Huang L, Lopez-Berestein G, Hung MC (2001) Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 19:3422–3433
CAS PubMed Google Scholar
- Ruiz FE, Clancy JP, Perricone MA, Bebok Z, Hong JS, Cheng SH, Meeker DP, Young KR, Schoumacher RA, Weatherly MR, Wing L, Morris JE, Sindel L, Rosenberg M, van Ginkel FW, McGhee JR, Kelly D, Lyrene RK, Sorscher EJ (2001) A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther 12:751–761
CAS PubMed Google Scholar
- Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M, Saito R, Nobayashi M, Wakabayashi T (2004) Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther 15:77–86
Article CAS PubMed Google Scholar
- Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X, Durham SR, Jeffery PK, Hodson ME, Coutelle C et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1:39–46
CAS PubMed Google Scholar
- Hui KM, Ang PT, Huang L, Tay SK (1997) Phase I study of immunotherapy of cutaneous metastases of human carcinoma using allogeneic and xenogeneic MHC DNA-liposome complexes. Gene Ther 4:783–790
CAS PubMed Google Scholar
- Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, Ratcliff R, Bilton D, Lane DJ, Littlewood JM, Webb AK, Middleton PG, Colledge WH, Cuthbert AW, Evans MJ, Higgins CF, Hyde SC (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:199–209
CAS PubMed Google Scholar
- Noone PG, Hohneker KW, Zhou Z, Johnson LG, Foy C, Gipson C, Jones K, Noah TL, Leigh MW, Schwartzbach C, Efthimiou J, Pearlman R, Boucher RC, Knowles MR (2000) Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther 1:105–114
Article CAS PubMed Google Scholar
- Hyde SC, Southern KW, Gileadi U, Fitzjohn EM, Mofford KA, Waddell BE, Gooi HC, Goddard CA, Hannavy K, Smyth SE, Egan JJ, Sorgi FL, Huang L, Cuthbert AW, Evans MJ, Colledge WH, Higgins CF, Webb AK, Gill DR (2000) Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 7:1156–1165
Article CAS PubMed Google Scholar
- Ren H, Boulikas T, Lundstrom K, Soling A, Warnke PC, Rainov NG (2003) Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene-a phase I/II clinical protocol. J Neurooncol 64:147–154
Article CAS PubMed Google Scholar
- Nabel GJ, Gordon D, Bishop DK, Nickoloff BJ, Yang ZY, Aruga A, Cameron MJ, Nabel EG, Chang AE (1996) Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci USA 93:15388–15393
CAS PubMed Google Scholar
- Porteous DJ, Dorin JR, McLachlan G, Davidson-Smith H, Davidson H, Stevenson BJ, Carothers AD, Wallace WA, Moralee S, Hoenes C, Kallmeyer G, Michaelis U, Naujoks K, Ho LP, Samways JM, Imrie M, Greening AP, Innes JA (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:210–218
Article CAS PubMed Google Scholar
- Brigham KL, Lane KB, Meyrick B, Stecenko AA, Strack S, Cannon DR, Caudill M, Canonico AE (2000) Transfection of nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects: comparison with protein therapy. Hum Gene Ther 11:1023–1032
Article CAS PubMed Google Scholar
- Stopeck AT, Jones A, Hersh EM, Thompson JA, Finucane DM, Gutheil JC, Gonzalez R (2001) Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res 7:2285–2291
CAS PubMed Google Scholar