Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia (original) (raw)

References

  1. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144
    Article PubMed CAS Google Scholar
  2. Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71
    Article PubMed CAS Google Scholar
  3. Modrek B, Resch A, Grasso C, Lee C (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29:2850–2859
    Article PubMed CAS Google Scholar
  4. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437
    Article PubMed CAS Google Scholar
  5. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298
    Article PubMed CAS Google Scholar
  6. Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, Hogan EL, Boustany RM, Vance JM, Nance MA et al (2001) Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet 68:1077–1085
    Article PubMed CAS Google Scholar
  7. Beck S, Penque D, Garcia S, Gomes A, Farinha C, Mata L, Gulbenkian S, Gil-Ferreira K, Duarte A, Pacheco P et al (1999) Cystic fibrosis patients with the 3272-26A->G mutation have mild disease, leaky alternative mRNA splicing, and CFTR protein at the cell membrane. Hum Mutat 14:133–144
    Article PubMed CAS Google Scholar
  8. Nissim-Rafinia M, Kerem B (2005) The splicing machinery is a genetic modifier of disease severity. Trends Genet 21:480–483
    Article PubMed CAS Google Scholar
  9. Moller LB, Tumer Z, Lund C, Petersen C, Cole T, Hanusch R, Seidel J, Jensen LR, Horn N (2000) Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet 66:1211–1220
    Article PubMed CAS Google Scholar
  10. Garcia-Blanco MA (2003) Mending the message. Nat Biotechnol 21:1448–1449
    Article PubMed CAS Google Scholar
  11. Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546
    Article PubMed CAS Google Scholar
  12. Yeo GW (2005) Splicing regulators: targets and drugs. Genome Biol 6:240
    Article PubMed CAS Google Scholar
  13. Pearson J (1979) Familial dysautonomia (a brief review). J Auton Nerv Syst 1:119–126
    Article PubMed CAS Google Scholar
  14. Axelrod FB (1995) Familial Dysautonomia. Harwood Academic, Luxembourg
    Google Scholar
  15. Lehavi O, Aizenstein O, Bercovich D, Pavzner D, Shomrat R, Orr-Urtreger A, Yaron Y (2003) Screening for familial dysautonomia in Israel: evidence for higher carrier rate among Polish Ashkenazi Jews. Genet Test 7:139–142
    Article PubMed CAS Google Scholar
  16. Maayan C, Kaplan E, Shachar S, Peleg O, Godfrey S (1987) Incidence of familial dysautonomia in Israel 1977–1981. Clin Genet 32:106–108
    Article PubMed CAS Google Scholar
  17. Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68:753–758
    Article PubMed CAS Google Scholar
  18. Leyne M, Mull J, Gill SP, Cuajungco MP, Oddoux C, Blumenfeld A, Maayan C, Gusella JF, Axelrod FB, Slaugenhaupt SA (2003) Identification of the first non-Jewish mutation in familial dysautonomia. Am J Med Genet A 118:305–308
    Article PubMed Google Scholar
  19. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605
    Article PubMed CAS Google Scholar
  20. Cuajungco MP, Leyne M, Mull J, Gill SP, Lu W, Zagzag D, Axelrod FB, Maayan C, Gusella JF, Slaugenhaupt SA (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72:749–758
    Article PubMed CAS Google Scholar
  21. Byers PH (2002) Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest 109:3–6
    Article PubMed CAS Google Scholar
  22. Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, Quintero F, Axelrod FB, Gusella JF (2004) Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet 13:429–436
    Article PubMed CAS Google Scholar
  23. Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, Siebenlist U, Merville MP, Slaugenhaupt SA, Bours V et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22:521–531
    Article PubMed CAS Google Scholar
  24. Ibrahim EC, Hims MM, Shomron N, Burge CB, Slaugenhaupt SA, Reed R (2006) Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum Mutat 2006 Sep 8 [Epub ahead of print]
  25. Cohen L, Henzel WJ, Baeuerle PA (1998) IKAP is a scaffold protein of the IkappaB kinase complex. Nature 395:292–296
    Article PubMed CAS Google Scholar
  26. Krappmann D, Hatada EN, Tegethoff S, Li J, Klippel A, Giese K, Baeuerle PA, Scheidereit C (2000) The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component. J Biol Chem 275:29779–29787
    Article PubMed CAS Google Scholar
  27. Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H et al (2002) Purification and characterization of the human elongator complex. J Biol Chem 277:3047–3052
    Article PubMed CAS Google Scholar
  28. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688
    Article PubMed CAS Google Scholar
  29. Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17:841–853
    Article PubMed CAS Google Scholar
  30. Holmberg C, Katz S, Lerdrup M, Herdegen T, Jaattela M, Aronheim A, Kallunki T (2002) A novel specific role for I-kappa B kinase complex-associated protein in cytosolic stress signaling. J Biol Chem 10:10
    Article Google Scholar
  31. Heemskerk J, Tobin AJ, Bain LJ (2002) Teaching old drugs new tricks. Meeting of the Neurodegeneration Drug Screening Consortium, 7–8 April 2002, Washington, DC, USA. Trends Neurosci 25:494–496
    Article PubMed Google Scholar
  32. Blumenfeld A, Slaugenhaupt SA, Axelrod FB, Lucente DE, Maayan C, Liebert CB, Ozelius LJ, Trofatter JA, Haines JL, Breakefield XO et al (1993) Localization of the gene for familial dysautonomia on chromosome 9 and definition of DNA markers for genetic diagnosis. Nat Genet 4:160–164
    Article PubMed CAS Google Scholar
  33. Sorek R, Shemesh R, Cohen Y, Basechess O, Ast G, Shamir R (2004) A non-EST-based method for exon-skipping prediction. Genome Res 14:1617–1623
    Article PubMed CAS Google Scholar
  34. Lambert J, Naeyaert JM, Callens T, De Paepe A, Messiaen L (1998) Human myosin V gene produces different transcripts in a cell type-specific manner. Biochem Biophys Res Commun 252:329–333
    Article PubMed CAS Google Scholar
  35. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H et al (2006) The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem 96:635–644
    Article PubMed CAS Google Scholar
  36. Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17:2143–2150
    PubMed CAS Google Scholar
  37. Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013
    Article PubMed CAS Google Scholar
  38. Dominski Z, Kole R (1991) Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol 11:6075–6083
    PubMed CAS Google Scholar
  39. Xu R, Teng J, Cooper TA (1993) The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol 13:3660–3674
    PubMed CAS Google Scholar
  40. Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555
    Article PubMed CAS Google Scholar
  41. Ars E, Serra E, Garcia J, Kruyer H, Gaona A, Lazaro C, Estivill X (2000) Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 9:237–247
    Article PubMed CAS Google Scholar
  42. Ars E, Kruyer H, Morell M, Pros E, Serra E, Ravella A, Estivill X and Lazaro C (2003) Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 40:e82
    Article PubMed CAS Google Scholar
  43. Rattan SI, Clark BF (1994) Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem Biophys Res Commun 201:665–672
    Article PubMed CAS Google Scholar
  44. Olsen A, Siboska GE, Clark BF, Rattan SI (1999) N(6)-Furfuryladenine, kinetin, protects against Fenton reaction-mediated oxidative damage to DNA. Biochem Biophys Res Commun 265:499–502
    Article PubMed CAS Google Scholar
  45. Verbeke P, Siboska GE, Clark BF, Rattan SI (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Commun 276:1265–1270
    Article PubMed CAS Google Scholar
  46. McCullough JK (2002) Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase) to treat photodamaged skin. Cosmet Dermatol 15:29
    Google Scholar
  47. Holste D, Huo G, Tung V, Burge CB (2006) HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 34:D56–D62
    Article PubMed CAS Google Scholar
  48. Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, Fic W, Divita G, Rivalle C, Dauzonne D et al (2005) Selective modification of alternative splicing by indole derivatives that target serine–arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 102:8764–8769
    Article PubMed CAS Google Scholar
  49. Singh R, Valcarcel J (2005) Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 12:645–653
    Article PubMed CAS Google Scholar
  50. Carmel I, Tal S, Vig I, Ast G (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10:828–840
    Article PubMed CAS Google Scholar

Download references