Aguilar-Bryan L., Nichols C.G., Wechsler S.W., Clement J.P., Boyd A.E., González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D.A. 1995. Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426 CASPubMed Google Scholar
Aickin C.C., Brading A.F. 1982. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes. J. Physiol. 326:139–154 CASPubMed Google Scholar
Akao M., Ohler A., O’Rourke B., Marban E. 2001. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ. Res. 88:1267–1275 CASPubMed Google Scholar
Allbritton N.L., Verret C.R., Wolley R.C., Eisen H.N. 1988. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J. Exp. Med. 167:514–527 CASPubMed Google Scholar
Ashcroft F.M. 2005. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115:2047–2058 CASPubMed Google Scholar
Ashcroft F.M., Kakei M. 1989. ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions. J. Physiol. 416:349–367 CASPubMed Google Scholar
Bähring R., Milligan C.J., Vardanyan V., Engeland B., Young B.A., Dannenberg J., Waldschutz R., Edwards J.P., Wray D., Pongs O. 2001. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvb subunits. J. Biol. Chem. 276:22923–22929 PubMed Google Scholar
Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. 1998. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144 CASPubMed Google Scholar
Beech D.J., Zhang H., Nakao K., Bolton T.B. 1993. K-channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br. J. Pharmacol. 110:573–582 CASPubMed Google Scholar
Bock J., Szabó I., Jekle A., Gulbins E. 2002. Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem. Biophys. Res. Commun. 295:526–531 CASPubMed Google Scholar
Bonev A.D., Nelson M.T. 1993. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am. J. Physiol. 264:C1190–C1200 CASPubMed Google Scholar
Bortner C.D., Cidlowski J.A. 1999. Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274:21953–21962 CASPubMed Google Scholar
Bortner C.D., Gómez-Angelats M., Cidlowski J.A. 2001. Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J. Biol. Chem. 276:4304–4314 CASPubMed Google Scholar
Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1997. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 272:32436–32442 CASPubMed Google Scholar
Brenner R., Jegla T.J., Wickenden A., Liu Y., Aldrich R.W. 2000. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275:6453–6461 CASPubMed Google Scholar
Brevnova E.E., Platoshyn O., Zhang S., Yuan J.X.-J. 2004. Overexpression of human KCNA5 increases I K(V) and enhances apoptosis. Am. J. Physiol. 287:C715–C722 CAS Google Scholar
Brustovetsky T., Shalbuyeva N., Brustovetsky N. 2005. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J. Physiol. 568:47–59 CASPubMed Google Scholar
Buckler K.J., Williams B.A., Honoré E. 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525:135–142 CASPubMed Google Scholar
Butler A., Tsunoda S., McCobb D.P., Wei A., Salkoff L. 1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224 CASPubMed Google Scholar
Butler A., Wei A.G., Baker K., Salkoff L. 1989. A family of putative potassium channel genes in Drosophila. Science 243:943–947 CASPubMed Google Scholar
Cain K., Langlais C., Sun X.-M., Brown D.G., Cohen G.M. 2001. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 276:41985–41990 CASPubMed Google Scholar
Caley A.J., Gruss M., Franks N.P. 2005. The effects of hypoxia on the modulation of human TREK-1 potassium channels. J. Physiol. 562:205–212 CASPubMed Google Scholar
Cao C.-M., Xia Q., Gao Q., Chen M., Wong T.-M. 2005. Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J. Pharmacol. Exp. Ther. 312:644–650 CASPubMed Google Scholar
Chanda B., Asamoah O.K., Blunck R., Roux B., Bezanilla F. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856 CASPubMed Google Scholar
Chandy K.G., Gutman G.A. 1995. Voltage-gated K+ channels. In: R.A. North (eds). Ligand-, Voltage-Gated Ion Channels. CRC, Boca Raton, FL pp. 1–71 Google Scholar
Chang S.H., Phelps P.C., Berezesky I.K., Ebersberger M.L., Jr., Trump B.F. 2000. Studies on the mechanisms and kinetics of apoptosis induced by microinjection of cytochrome c in rat kidney tubule epithelial cells (NRK-52E). Am. J. Pathol. 156:637–649 CASPubMed Google Scholar
Choe S. 2002. Potassium channel structures. Nat. Rev. Neurosci. 3:115–121 CASPubMed Google Scholar
Clapp L.H. 1995. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes. Cardiovasc. Res. 30:460–468 CASPubMed Google Scholar
Clapp L.H., Gurney A.M. 1992. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. Am. J. Physiol. 262:H916–H920 CASPubMed Google Scholar
Coetzee W.A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T., Moreno H., Nadal M.S., Ozaita A., Pountney D., Saganich M., Vega-Saenz de Miera E., Rudy B. 1999. Molecular diversity of K+ channels. Ann. N.Y. Acad. Sci. 868:233–285 CASPubMed Google Scholar
Conway M.A., Nelson M.T., Brayden J.E. 1994. 2-Deoxyglucose-induced vasodilation and hyperpolarization in rat coronary artery are reversed by glibenclamide. Am. J. Physiol. 266:H1322–H1326 CASPubMed Google Scholar
Coppock E.A., Tamkun M.M. 2001. Differential expression of KV channel a- and b-subunits in the bovine pulmonary arterial circulation. Am. J. Physiol. 281:L1350–L1360 CAS Google Scholar
Cox D.H., Aldrich R.W. 2000. Role of the b1 subunit of large-conductance Ca2+-activated K+ channel gating energetics: Mechanisms of enhanced Ca2+ sensitivity. J. Gen. Physiol. 116:411–432 CASPubMed Google Scholar
Czirják G., Enyedi P. 2002. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277:5426–5432 PubMed Google Scholar
Dallaporta B., Hirsch T., Susin S.A., Zamzami N., Larochette N., Brenner C., Marzo I., Kroemer G. 1998. Potassium leakage during the apoptotic degradation phase. J. Immunol. 160:5605–5615 CASPubMed Google Scholar
Dallaporta B., Marchetti P., de Pablo M.A., Maisse C., Duc H.T., Metivier D., Zamzami N., Geuskens M., Kroemer G. 1999. Plasma membrane potential in thymocyte apoptosis. J. Immunol. 162:6534–6542 CASPubMed Google Scholar
Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. 1992. Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808 CASPubMed Google Scholar
Dębska G., May R., Kicinska A., Szewczyk A., Elger C.E., Kunz W.S. 2001. Potassium channel openers depolarize hippocampal mitochondria. Brain Res. 892:42–50 PubMed Google Scholar
Delmas P., Brown D.A. 2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:850–862 CASPubMed Google Scholar
Dispersyn G., Borgers M. 2001. Apoptosis in the heart: About programmed cell death and survival. News Physiol. Sci. 16:41–47 CASPubMed Google Scholar
Doupnik C.A., Davidson N., Lester H.A. 1995. The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5:268–277 CASPubMed Google Scholar
Doyle D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 CASPubMed Google Scholar
Duprat F., Girard C., Jarretou G., Lazdunski M. 2005. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J. Physiol. 562:235–244 CASPubMed Google Scholar
Duprat F., Lesage F., Fink M., Reyes R., Heurteaux C., Lazdunski M. 1997. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16:5464–5471 CASPubMed Google Scholar
Ekhterae D., Lin Z., Lundberg M.S., Crow M.T., Brosius F.C. III., Núñez G. 1999. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ. Res. 85:e70–e77 CASPubMed Google Scholar
Ekhterae D., Platoshyn O., Krick S., Yu Y., McDaniel S.S., Yuan J.X.-J. 2001. Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am. J. Physiol. 281:C157–C165 CAS Google Scholar
Ekhterae D., Platoshyn O., Zhang S., Remillard C.V., Yuan J.X.-J. 2003. Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am. J. Physiol. 284:C1405–C1410 CAS Google Scholar
Fernández-Fernández J.M., Nobles M., Currid A., Vázquez E., Valverde M.A. 2002. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am. J. Physiol. 283:C1705–C1714 Google Scholar
Ferri K.F., Kroemer G.. 2001. Mitochondria - the suicide organelles. BioEssays 23:111–115 CASPubMed Google Scholar
Ficker E., Taglialatela M., Wible B.A., Henley C.M., Brown A.M. 1994. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072 CASPubMed Google Scholar
Fitzpatrick C.M., Shi Y., Hutchins W.C., Su J., Gross G.J., Ostadal B., Tweddell J.S., Baker J.E. 2005. Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am. J. Physiol. 288:H62–H68 CAS Google Scholar
Forbes R.A., Steenbergen C., Murphy E. 2001. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ. Res. 88:802–809 CASPubMed Google Scholar
Ganetzky B., Robertson G.A., Wilson G.F., Trudeau M.C., Titus S.A. 1999. The Eag family of K+ channels in Drosophila and mammals. Ann. N.Y. Acad. Sci. 868:356–369 CASPubMed Google Scholar
Garlid K.D. 1996. Cation transport in mitochondria - the potassium cycle. Biochim. Biophys. Acta 1275:123–126 PubMed Google Scholar
Gómez-Angelats M., Bortner C.D., Cidlowski J.A. 2000. Protein kinase C (PKC) inhibits Fas receptor-induced apoptosis through modulation of the loss of K+ and cell shrinkage. J. Biol. Chem. 275:19609–19619 PubMed Google Scholar
Gong J., Xu J., Bezanilla M., van Huizen R., Derin R., Li M. 1999. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 285:1565–1569 CASPubMed Google Scholar
Goodman Y., Mattson M.P. 1996. K+ channel openers protect hippocampal neurons against oxidative injury and amyloid b-peptide toxicity. Brain Res. 706:328–332 CASPubMed Google Scholar
Green D.R., Evan G.I. 2002. A matter of life and death. Cancer Cell. 1:19–30 CASPubMed Google Scholar
Grishin A., Ford H., Wang J., Li H., Salvador-Recatala V., Levitan E.S., Zaks-Makhina E. 2005. Attenuation of apoptosis in enterocytes by blockade of potassium channels. Am. J. Physiol. 289:G815–G821 CAS Google Scholar
Gross A., Jockel J., Wei M.C., Korsmeyer S.J. 1998. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17:3878–3885 CASPubMed Google Scholar
Gu N., Vervaeke K., Hu H., Storm J.F. 2005. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J. Physiol. 566:689–715 CASPubMed Google Scholar
Gulbis J.M., Zhou M., Mann S., MacKinnon R. 2000. Structure of the cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289:123–127 CASPubMed Google Scholar
Gurney A.M., Osipenko O.N., MacMillan D., Kempsill F.E.J. 2002. Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 29:330–333 CASPubMed Google Scholar
Gurney A.M., Osipenko O.N., MacMillan D., McFarlane K.M., Tate R.J., Kempsill F.E. 2003. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ. Res. 93:957–964 CASPubMed Google Scholar
Hanner M., Schmalhofer W.A., Munujos P., Knaus H.G., Kaczorowski G.J., Garcia M.L. 1997. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc. Natl. Acad. Sci. USA 94:2853–2858 CASPubMed Google Scholar
Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, Massachusetts Google Scholar
Ho K., Nichols C.G., Lederer W.J., Lytton J., Vassilev P.M., Kanazirska M.V., Hebert S.C. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38 CASPubMed Google Scholar
Holmuhamedov E.L., Jovanovic’ S., Dzeja P.P., Jovanovic’ A., Terzic A. 1998. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am. J. Physiol. 275:H1567–H1576 CASPubMed Google Scholar
Huang C.L., Feng S., Hilgemann D.W. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391:803–806 CASPubMed Google Scholar
Hughes F.M., Jr., Bortner C.D., Purdy G.D., Cidlowski J.A. 1997. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272:30567–30576 CASPubMed Google Scholar
Hughes F.M., Jr., Cidlowski J.A. 1998. Glucocorticoid-induced thymocyte apoptosis: protease-dependent activation of cell shrinkage and DNA fragmentation. J. Steroid Biochem. Mol. Biol. 65:207–217 CASPubMed Google Scholar
Hugnot J.-P., Salinas M., Lesage F., Guillemare E., de Weille J., Heurteaux C., Mattei M.G., Lazdunski M. 1996. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J. 15:3322–3331 CASPubMed Google Scholar
Hulme J.T., Coppock E.A., Felipe A., Martens J.R., Tamkun M.M. 1999. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ. Res. 85:489–497 CASPubMed Google Scholar
Inagaki N., Gonoi T., Clement J.P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. 1995. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170 CASPubMed Google Scholar
Inai Y., Yabuki M., Kanno T., Akiyama J., Yasuda T., Utsumi K. 1997. Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct. Funct. 22:555–563 ArticleCASPubMed Google Scholar
Inoue I., Nagase H., Kishi K., Higuti T. 1991. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247 CASPubMed Google Scholar
Isom L.L., De Jongh K.S., Catterall W.A. 1994. Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194 CASPubMed Google Scholar
Johnson R.P., O’Kelly I.M., Fearon I.M. 2004. System-specific O2 sensitivity of the tandem pore domain K+ channel TASK-1. Am. J. Physiol. 286:C391–C397 CAS Google Scholar
Keen J.E., Khawaled R., Farrens D.L., Neelands T., Rivard A., Bond C.T., Janowsky A., Fakler B., Adelman J.P., Maylie J. 1999. Domains responsible for constitutive and Ca2+-dependent Interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19:8830–8838 CASPubMed Google Scholar
Keller S.H., Platoshyn O., Yuan J.X.-J. 2005. Long QT syndrome-associated I593R mutation in HERG potassium channel activates ER stress pathways. Cell Biochem. Biophys. 43:365–378 CASPubMed Google Scholar
Kerschensteiner D., Soto F., Stocker M. 2005. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier a-subunits. Proc. Natl. Acad. Sci. USA 102:6160–6165 CASPubMed Google Scholar
Kluck R.M., Bossy-Wetzel E., Green D.R., Newmeyer D.D. 1997. The release of cytochrome C from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136 CASPubMed Google Scholar
Knaus H.G., Garcia-Calvo M., Kaczorowski G.J., Garcia M.L. 1994. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J. Biol. Chem. 269:3921–3924 CASPubMed Google Scholar
Köhler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. 1995. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714 Google Scholar
Köhler R., Wulff H., Eichler I., Kneifel M., Neumann D., Knorr A., Grgic I., Kämpfe D., Si H., Wibawa J., Real R., Borner K., Brakemeier S., Orzechowski H.-D., Reusch H.-P., Paul M., Chandy K.G., Hoyer J. 2003. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125 PubMed Google Scholar
Koni P.A., Khanna R., Chang M.C., Tang M.D., Kaczmarek L.K., Schlichter L.C., Flavella R.A. 2003. Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J. Biol. Chem. 278:39443–39451 CASPubMed Google Scholar
Korge P., Honda H.M., Weiss J.N. 2005. K+-dependent regulation of matrix volume improves mitochondrial function under conditions mimicking ischemia-reperfusion. Am. J. Physiol. 289:H66–H77 CAS Google Scholar
Kowaltowski A.J., Seetharaman S., Paucek P., Garlid K.D. 2001. Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am. J. Physiol. 280:H649–H657 CAS Google Scholar
Kramer J.W., Post M.A., Brown A.M., Kirsch G.E. 1998. Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 a-subunits. Am. J. Physiol. 274:C1501–C1510 CASPubMed Google Scholar
Krick S., Platoshyn O., McDaniel S.S., Rubin L.J., Yuan J.X.-J. 2001a. Augmented K+ currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am. J. Physiol. 281:L887–L894 CAS Google Scholar
Krick S., Platoshyn O., Sweeney M., Kim H., Yuan J.X.-J. 2001b. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am. J. Physiol. 280:C970–C979 CAS Google Scholar
Krick S., Platoshyn O., Sweeney M., McDaniel S.S., Zhang S., Rubin L.J., Yuan J.X.-J. 2002. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am. J. Physiol. 282:H184–H193 CAS Google Scholar
Kroemer G., Reed J.C. 2000. Mitochondrial control of cell death. Nat. Med. 6:513–519 CASPubMed Google Scholar
Kubo Y., Baldwin T.J., Jan Y.N., Jan L.Y. 1993a. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133 CAS Google Scholar
Kubo Y., Reuveny E., Slesinger P.A., Jan Y.N., Jan L.Y. 1993b. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806 CAS Google Scholar
Kuo A., Gulbis J.M., Antcliff J.F., Rahman T., Lowe E.D., Zimmer J., Cuthbertson J., Ashcroft F.M., Ezaki T., Doyle D.A. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926 CASPubMed Google Scholar
Kurata H.T., Wang Z., Fedida D. 2004. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. J. Gen. Physiol. 123:505–520 CASPubMed Google Scholar
Lang F., Busch G.L., Ritter M., Völkl H., Waldegger S., Gulbins E., Häussinger D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306 CASPubMed Google Scholar
Lang P.A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S.M. 2003. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am. J. Physiol. 285:C1553–C1560 CAS Google Scholar
Lesage F., Guillemare E., Fink M., Duprat F., Lazdunski M., Romey G., Barhanin J. 1996a. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15:1004–1011 CAS Google Scholar
Lesage F., Lazdunski M. 2000. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. 279:F793–F801 CAS Google Scholar
Lesage F., Reyes R., Fink M., Duprat F., Guillemare E., Lazdunski M. 1996b. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J. 15:6400–6407 CAS Google Scholar
Lewis A., Hartness M.E., Chapman C.G., Fearon I.M., Meadows H.J., Peers C., Kemp P.J. 2001. Recombinant hTASK1 is an O2-sensitive K+ channel. Biochem. Biophys. Res. Comm. 285:1290–1294 CASPubMed Google Scholar
Li P.-F., Maasch C., Haller H., Dietz R., von Harsdorf R. 1999. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation 100:967–973 CASPubMed Google Scholar
Liu D., Lu C., Wan R., Auyeung W.W., Mattson M.P. 2002. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22:431–443 CASPubMed Google Scholar
Liu D., Slevin J.R., Lu C., Chan S.L., Hansson M., Elmer E., Mattson M.P. 2003. Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J. Neurochem. 86:966–979 CASPubMed Google Scholar
Liu Y., Gao W.D., O’Rourke B., Marban E. 1996. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine - implications for ischemic preconditioning. Circ. Res. 78:443–454 CASPubMed Google Scholar
Liu Y., Sato T., O’Rourke B., Marban E. 1998. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469 CASPubMed Google Scholar
Liu Y., Sato T., Seharaseyon J., Szewczyk A., O’Rourke B., Marbán E. 1999. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann. N.Y. Acad. Sci. 874:27–37 CASPubMed Google Scholar
Long S.B., Campbell E.B., Mackinnon R. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903 CAS Google Scholar
Long S.B., Campbell E.B., Mackinnon R. 2005b. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908 CAS Google Scholar
Lopatin A.N., Makhina E.N., Nichols C.G. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369 CASPubMed Google Scholar
Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97:9487–9492 CASPubMed Google Scholar
Mandegar M., Remillard C.V., Yuan J.X.-J. 2002. Ion channels in pulmonary arterial hypertension. Prog. Cardiovasc. Dis. 45:81–114 CASPubMed Google Scholar
Mann C.L., Bortner C.D., Jewell C.M., Cidlowski J.A. 2001. Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na+/K+-adenosine triphosphatase. Endocrinology 142:5059–5068 CASPubMed Google Scholar
Mayr M., Xu Q. 2001. Smooth muscle cell apoptosis in arteriosclerosis. Exp. Gerontol. 36:969–987 CASPubMed Google Scholar
McCobb D.P., Fowler N.L., Featherstone T., Lingle C.J., Saito M., Krause J.E., Salkoff L. 1995. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. 269:H767–H777 CASPubMed Google Scholar
McLaughlin B., Pal S., Tran M.P., Parsons A.A., Barone F.C., Erhardt J.A., Aizenman E. 2001. p38 Activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J. Neurosci. 21:3303–3311 CASPubMed Google Scholar
McMurtry M.S., Archer S.L., Altieri D.C., Bonnet S., Haromy A., Harry G., Bonnet S., Puttagunta L., Michelakis E.D. 2005. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J. Clin. Invest. 115:1479–1491 CASPubMed Google Scholar
McMurtry M.S., Bonnet S., Wu X., Dyck J.R.B., Haromy A., Hashimoto K., Michelakis E.D. 2004. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95:830–840 CASPubMed Google Scholar
Meera P., Wallner M., Song M., Toro L. 1997. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. USA 94:14066–14071 CASPubMed Google Scholar
Montague J.W., Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1999. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64:563–569 CASPubMed Google Scholar
Murata M., Akao M., O’Rourke B., Marban E. 2001. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ. Res. 89:891–898 CASPubMed Google Scholar
Nelson M.T., Quayle J.M. 1995. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268:C799–C822 CASPubMed Google Scholar
Neylon C.B., Lang R.J., Fu Y., Bobik A., Reinhart P.H. 1999. Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: Relationship between KCa channel diversity and smooth muscle cell function. Circ. Res. 85:e33–e43 CASPubMed Google Scholar
Niemeyer M.I., Cid L.P., Barros L.F., Sepúlveda F.V. 2001. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276:43166–43174 CASPubMed Google Scholar
Nietsch H.H., Roe M.W., Fiekers J.F., Moore A.L., Lidofsky S.D. 2000. Activation of potassium and chloride channels by tumor necrosis factor a: Role in liver cell death. J. Biol. Chem. 275:20556–20561 CASPubMed Google Scholar
Nishida M., MacKinnon R. 2002. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111:957–965 CASPubMed Google Scholar
Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148 CASPubMed Google Scholar
Ojcius D.M., Zychlinsky A., Zheng L.M., Young J.D. 1991. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp. Cell. Res. 197:43–49 CASPubMed Google Scholar
Orio P., Latorre R. 2005. Differential effects of b1 and b2 subunits on BK channel activity. J. Gen. Physiol. 125:395–411 CASPubMed Google Scholar
Ottschytsch N., Raes A., Van Hoorick D., Snyders D.J. 2002. Obligatory heterotetramerization of three previously uncharacterized Kv channel a-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99:7986–7991 CASPubMed Google Scholar
Ouadid-Ahidouch H., Roudbaraki M., Delcourt P., Ahidouch A., Joury N., Prevarskaya N. 2004. Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am. J. Physiol. 287:C125–C134 CAS Google Scholar
Pallotta B.S., Magleby K.L., Barrett J.N. 1981. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293:471–474 CASPubMed Google Scholar
Papazian D.M., Schwarz T.L., Tempel B.L., Jan Y.N., Jan L.Y. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753 CASPubMed Google Scholar
Patel A.J., Honoré E., Lesage F., Fink M., Romey G., Lazdunski M. 1999a. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426 CAS Google Scholar
Patel A.J., Lazdunski M. 2004. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflügers Arch. – Eur. J. Physiol. 448:261–273 CAS Google Scholar
Patel A.J., Lazdunski M., Honoré E. 1997. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J. 16:6615–6625 CASPubMed Google Scholar
Patel A.J., Lazdunski M., Honoré E. 1999b. Kv2.1/Kv9.3, an ATP-dependent delayed-rectifier K+ channel in pulmonary artery myocytes. Ann. N.Y. Acad. Sci. 868:438–4s41 CAS Google Scholar
Pérez-García M.T., López-López J.R., González C. 1999. Kvb1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J. Gen. Physiol. 113:897–907 PubMed Google Scholar
Platoshyn O., Zhang S., McDaniel S.S., Yuan J.X.-.J. 2002. Cytochrome c activates K+ channels before inducing apoptosis. Am. J. Physiol. 283:C1298–C1305 CAS Google Scholar
Posson D.J., Ge P., Miller C., Bezanilla F., Selvin P.R. 2005. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851 CASPubMed Google Scholar
Post M.A., Kirsch G.E., Brown A.M. 1996. Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett. 399:177–182 CASPubMed Google Scholar
Pourrier M., Herrera D., Caballero R., Schram G., Wang Z., Nattel S. 2004. The Kv4.2 N-terminal restores fast inactivation and confers KChIP2 modulatory effects on N-terminal-deleted Kv1.4 channels. Pflügers Arch. – Eur. J. Physiol. 449:235–247 CAS Google Scholar
Quayle J.M., Dart C., Standen N.B. 1996. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol. 494:715–720 CASPubMed Google Scholar
Quayle J.M., Nelson M.T., Standen N.B. 1997. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77:1165–1232 CASPubMed Google Scholar
Rasmusson R.L., Wang S., Castellino R.C., Morales M.J., Strauss H.C. 1997. The b subunit, Kvb1.2, acts as a rapid open channel blocker of NH2 terminal deleted Kv1.4 a-subunits. Adv. Exp. Med. Biol. 430:29–37 CASPubMed Google Scholar
Remillard C.V., Yuan J.X.-J. 2004. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. 286:L49–L67 CAS Google Scholar
Rettig J., Heinemann S.H., Wunder F., Lorra C., Parcej D.N., Dolly J.O., Pongs O. 1994. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369:289–294 CASPubMed Google Scholar
Rousou A.J., Ericsson M., Federman M., Levitsky S., McCully J.D. 2004. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am. J. Physiol. 287:H1967–H1976 CAS Google Scholar
Ryer E.J., Sakakibara K., Wang C., Sarkar D., Fisher P.B., Faries P.L., Kent K.C., Liu B. 2005. Protein kinase C delta induces apoptosis of vascular smooth muscle cells through induction of the tumor suppressor p53 by both p38 dependent and independent mechanisms. J. Biol. Chem. 280:35310–35317 CASPubMed Google Scholar
Salinas M., Duprat F., Heurteaux C., Hugnot J.-P., Lazdunski M. 1997. New modulatory a subunits for mammalian Shab K+ channels. J. Biol. Chem. 272:24371–24379 CASPubMed Google Scholar
Sano Y., Mochizuki S., Miyake A., Kitada C., Inamura K., Yokoi H., Nozawa K., Matsushime H., Furuichi K. 2002. Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K+ channel Kv2.1. FEBS Lett. 512:230–234 CASPubMed Google Scholar
Sasaki N., Sato T., Ohler A., O’Rourke B., Marbán E. 2000. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101:439–445 CASPubMed Google Scholar
Schrantz N., Blanchard D.A., Auffredou M.T., Sharma S., Leca G., Vazquez A. 1999. Role of caspases and possible involvement of retinoblastoma protein during TGFb-mediated apoptosis of human B lymphocytes. Oncogene 18**:**3511–3519 CASPubMed Google Scholar
Sewing S., Roeper J., Pongs O. 1996. Kvβ1 subunit binding specific for _Shaker_-related potassium channel a subunits. Neuron 16:455–463 CASPubMed Google Scholar
Shi W., Wang H.-S., Pan Z., Wymore R.S., Cohen I.S., McKinnon D., Dixon J.E. 1998. Cloning of a mammalian elk potassium channel gene and EAG mRNA distribution in rat sympathetic ganglia. J. Physiol. 511:675–682 CASPubMed Google Scholar
Shimizu S., Eguchi Y., Kamiike W., Funahashi Y., Mignon A., Lacronique V., Matsuda H., Tsujimoto Y. 1998. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc. Natl. Acad. Sci. USA 95:1455–1459 CASPubMed Google Scholar
Shimizu S., Ide T., Yanagida T., Tsujimoto Y. 2000a. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275:12321–12325 CAS Google Scholar
Shimizu S., Konishi A., Kodama T., Tsujimoto Y. 2000b. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97:3100–3105 CAS Google Scholar
Siemen D., Loupatatzis C., Borecky J., Gulbins E., Lang F. 1999. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 257:549–554 CASPubMed Google Scholar
Soh H., Park C.-S. 2001. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biochem. J. 80:2207–2215 CAS Google Scholar
Stocker M. 2004. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5:758–770 CASPubMed Google Scholar
Storey N.M., Gómez-Angelats M., Bortner C.D., Armstrong D.L., Cidlowski J.A. 2003. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 278:33319–33326 CASPubMed Google Scholar
Szabò I., Gulbins E., Apfel H., Zhang X., Barth P., Busch A.E., Schlottmann K., Pongs O., Lang F. 1996. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J. Biol. Chem. 271:20465–20469 PubMed Google Scholar
Thompson G.J., Langlais C., Cain K., Conley E.C., Cohen G.M. 2001. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem. J. 357:137–145 CASPubMed Google Scholar
Toro L., Wallner M., Meera P., Tanaka Y. 1998. Maxi-KCa, a unique member of the voltage-gated K channel superfamily. News Physiol. Sci. 13:112–117 CASPubMed Google Scholar
Trimarchi J.R., Liu L., Smith P.J., Keefe D.L. 2002. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. 282:C588–C594 CAS Google Scholar
Tseng-Crank J., Godinot N., Johansen T.E., Ahring P.K., Strøbæk D., Mertz R., Foster C.D., Olesen S.-P., Reinhart P.H. 1996. Cloning, expression, and distribution of a Ca2+-activated K+ channel β-subunit from human brain. Proc. Natl. Acad. Sci. USA 93:9200–9205 CASPubMed Google Scholar
Vander Heiden M.G., Chandel N.S., Williamson E.K., Schumacker P.T., Thompson C.B. 1997. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mtochondrial ATP/ADP exchange. Cell 91:627–637 CASPubMed Google Scholar
Vega-Saenz de Miera E.C. 2004. Modification of Kv2.1 K+ currents by the silent Kv10 subunits. Mol. Brain Res. 123:91–103 CASPubMed Google Scholar
Vu C.C.Q., Bortner C.D., Cidlowski J.A. 2001. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J. Biol. Chem. 276:37602–37611 CASPubMed Google Scholar
Wang H.-W., Zhang Y., Cao L., Han H., Wang J., Yang B., Nattel S., Wang Z. 2002. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res. 62:4843–4848 CASPubMed Google Scholar
Wang J., Morishima S., Okada Y. 2003. IK channels are involved in the regulatory volume decrease in human epithelial cells. Am. J. Physiol. 284:C77–C84 CAS Google Scholar
Wang J., Zhou Y., Wen H., Levitan I.B. 1999a. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J. Neurosci. 19:1–7 Google Scholar
Wang L., Xu D., Dai W., Lu L. 1999b. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J. Biol. Chem. 274:3678–3685 CAS Google Scholar
Wang X., Xiao Y., Ichinose T., Yu S.P. 2000. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 295:524–530 CASPubMed Google Scholar
Wang X.Q., Yu S.P. 2002. Tyrosine phosphorylation regulates activity of Na+, K+-ATPase in cortical neurons. Soc. Neurosci. Abstracts446.8
Wesselborg S., Kabelitz D. 1993. Activation-driven death of human T cell clones: time course kinetics of the induction of cell shrinkage, DNA fragmentation, and cell death. Cell Immunol. 148:234–241 CASPubMed Google Scholar
Wible B.A., Wang L., Kuryshev Y.A., Basu A., Haldar S., Brown A.M. 2003. Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3b in prostate cancer cells. J. Biol. Chem. 277:17852–17862 Google Scholar
Wolf C.M., Reynolds J.E., Morana S.J., Eastman A. 1997. The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp. Cell. Res. 230:22–27 CASPubMed Google Scholar
Xi Q., Cheranov S.Y., Jaggar J.H. 2005. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ. Res. 97:354–362 CASPubMed Google Scholar
Xia X.-M., Ding J.P., Lingle C.J. 2003. Inactivation of BK channels by b2 the auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues. J. Gen. Physiol. 121:125–148 CASPubMed Google Scholar
Xia X.-M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507 CASPubMed Google Scholar
Xiao A.Y., Wei L., Xia S., Rothman S., Yu S.-P. 2002. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J. Neurosci. 22:1350–1362 CASPubMed Google Scholar
Xu W., Liu Y., Wang S., McDonald T., Van Eyk J.E., Sidor A., O’Rourke B. 2002. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033 CASPubMed Google Scholar
Yang J., Jan Y.N., Jan L.Y. 1995. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14:1047–1054 CASPubMed Google Scholar
Yang J., Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.-I., Jones D.P., Wang X. 1997. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132 CASPubMed Google Scholar
Yao Z., Tong J., Tan X., Li C., Shao Z., Kim W.C., Vanden Hoek T.L., Becker L.B., Head C.A., Schumacker P.T. 1999. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am. J. Physiol. 277:H2504–H2509 CASPubMed Google Scholar
Yu S.P., Yeh C.-H., Gottron F., Wang X., Grabb M.C., Choi D.W. 1999. Role of the outwardly delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J. Neurochem. 73:933–941 CASPubMed Google Scholar
Yu S.P., Yeh C.-H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117 CASPubMed Google Scholar
Yu W., Xu J., Li M. 1996. NAB domain is essential for the subunit assembly of both a-a and a-b complexes of Shaker-like potassium channels. Neuron 16:441–453 CASPubMed Google Scholar
Yuan J., Yankner B.A. 2000. Apoptosis in the nervous system. Nature 407:802–809 CASPubMed Google Scholar
Yuan X.-J., Tod M.L., Rubin L.J., Blaustein M.P. 1995. Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes. Am. J. Physiol. 268:C259–C270 CASPubMed Google Scholar
Zagotta W.N., Hoshi T., Aldrich R.W. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571 CASPubMed Google Scholar
Zhang H.Y., McPherson B.C., Liu H., Baman T.S., Rock P., Yao Z. 2002. H2O2 opens mitochondrial KATP channels and inhibits GABA receptors via protein kinase C-e in cardiomyocytes. Am. J. Physiol. 282:H1395–H1403 CAS Google Scholar
Zhao B., Rassendren F., Kaang B.K., Furukawa Y., Kubo T., Kandel E.R. 1994. A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron 13:1205–1213 CASPubMed Google Scholar
Zhu H.i.-F., Dong J.-W., Zhu W.-Z., Ding H.-L., Zhou Z.-N. 2003. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci. 73:1275–1287 CASPubMed Google Scholar
Zhu X.-R., Netzer R., Bohlke K., Liu Q., Pongs O. 1999. Structural and functional characterization of Kv6.2, a new g-subunit of voltage-gated potassium channel. Receptors Channels 6:337–350 CASPubMed Google Scholar