Effects of rapid prey evolution on predator–prey cycles (original) (raw)
Abrams P. and Matsuda H. (1997). Prey adaptation as a cause of predator–prey cycles. Evolution 51: 1742–1750 Article Google Scholar
Abrams P. (1999). Is predator-mediated coexistence possible in unstable systems?. Ecology 80: 608–621 Google Scholar
Andersson D.I. and Levin B.R. (1999). The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489–493 Article Google Scholar
Antonovics J., Bradshaw A.D. and Turner R.G. (1971). Heavy metal tolerance in plants. Adv. Ecol. Res. 71: 1–85 Article Google Scholar
Arino J., Pilyugin S. and Wolkowicz G.S.K. (2003). Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models. Can. Appl. Math. Quart. 11: 107–142 MATHMathSciNet Google Scholar
Ashley M.V., Willson M.F., Pergams O.R.W., O’Dowd D.J., Gende S.M. and Brown J.S. (2003). Evolutionarily enlightened management. Biol. Conserv. 111: 115–123 Article Google Scholar
Barry M. (1994). The costs of crest induction for Daphnia carinata. Oecologia 97: 278–288 Article Google Scholar
Becks L., Hilker F.M., Malchow H., Jürgens K. and Arndt H. (2005). Experimental demonstration of chaos in a microbial foodweb. Nature 435: 1226–1229 Article Google Scholar
Bergelson J. and Purrington C.B. (1996). Surveying patterns in the cost of resistance in plants. Am. Nat. 148: 536–558 Article Google Scholar
Bohannan B.J.M. and Lenski R. (1997). Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78: 2303–2315 Article Google Scholar
Bohannan B.J.M. and Lenski R. (1999). Effect of prey heterogeneity on the response of a model food chain to resource enrichment. Am. Nat. 153: 73–82 Article Google Scholar
Butler G.J. and Wolkowicz G.S.K. (1986). Predator-mediated competition in the chemostat. J. Math. Biol. 24: 167–191 ArticleMATHMathSciNet Google Scholar
Coltman D.W., O’Donoghue P., Jorgenson J.T., Hogg J.T., Strobeck C. and Festa-Blanchet M. (2003). Undesirable evolutionary consequences of trophy-hunting. Nature 426: 655–658 Article Google Scholar
Conover D.O. and Munch S.B. (2002). Sustaining fisheries yields over evolutionary time scales. Science 297: 94–96 Article Google Scholar
Fussmann G.F., Ellner S.P., Shertzer K.W. and Hairston N.G. (2000). Crossing the Hopf bifurcation in a live predator–prey system. Science 290: 1358–1360 Article Google Scholar
Fussmann G.F., Ellner S.P. and Hairston N.G. (2003). Evolution as a critical component of plankton dynamics. Proc. Roy. Soc. Lond. Ser B 270: 1015–1022 Article Google Scholar
Gagneux S., Long C.D., Small P.M., Van T., Schoolnik G.K. and Bohannan B.J.M. (2006). The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312: 1944–1946 Article Google Scholar
Grant P.R. and Grant B.R. (2002). Unpredictable evolution in a thirty year study of Darwin’s finches. Science 296: 707–710 Article Google Scholar
Guckenheimer J., Myers M. and Sturmfels B. (1997). Computing Hopf bifurcations I. SIAM J. Numer. Anal. 34: 1–27 ArticleMATHMathSciNet Google Scholar
Hairston N.G. and Walton W.E. (1986). Rapid evolution of a life-history trait. Proc. Natl. Acad. Sci. USA 83: 4831–4833 Article Google Scholar
Hairston N.G., Ellner S.P., Geber M.A., Yoshida T. and Fox J.A. (2005). Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8: 1114–1127 Article Google Scholar
Heath D.D., Heath J.W., Bryden C.A., Johnson R.M. and Fox C.W. (2003). Rapid evolution of egg size in captive salmon. Science 299: 1738–1740 Article Google Scholar
Hendry A.P. and Kinnison M.T. (1999). The pace of modern life: measuring rates of contemporary microevolution. Evolution 53: 1637–1653 Article Google Scholar
Jones L.E. and Ellner S.P. (2004). Evolutionary tradeoff and equilibrium in a predator–prey system. Bull. Math. Biol. 66: 1547–1573 ArticleMathSciNet Google Scholar
Kinnison, M.T., Hairston, N.G. Jr.: Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct. Ecol. (submitted) (2006)
Kretzschmar M., Nisbet R.M. and McCauley E. (1993). A predator–prey model for zooplankton grazing on competing algal populations. Theor. Pop. Biol. 44: 32–66 ArticleMATH Google Scholar
Kuznetsov, Y.A.: Elements of applied bifurcation theory. Applied Mathematical Sciences, vol. 112, Chap. 8. Springer, New York (1994) Google Scholar
May, R.M.: Stability and complexity in model ecosystems. Princeton University Press, Princeton, New York (1974) Google Scholar
Meyer J., Ellner S.P., Jones L.E., Yoshida T. and Hairston N.G. (2006). Prey evolution of the time scale of predator–prey dynamics revealed by allele-specific quantitative PCR. Proc. Natl. Acad. Sci. 103: 10690–10695 Article Google Scholar
Olsen E.M., Heino M., Lilly G.R., Morgan M.J., Brattey J. and Dieckmann U. (2004). Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428: 932–935 Article Google Scholar
Palumbi S. (2001). The evolution explosion: how humans cause rapid evolutionary change. Norton W.W., New York Google Scholar
Pickett-Heaps J.D. (1975). Green Algae: Structure, Reproduction and Evolution in Selected Genera. Sinauer Associates, Sunderland Google Scholar
Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. (1988). Numerical Recipes in C. Cambridge University Press, Cambridge MATH Google Scholar
Preisser E.L., Bolnick D.J. and Benard M.F. (2005). Scared to Death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86: 501–509 Article Google Scholar
Reznick D.N., Shaw F.H., Rodd F.H. and Shaw R.G. (1997). Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937 Article Google Scholar
Ruan S. and Wolkowicz G.S.K. (1996). Bifurcation of a chemostat model with a distributed delay. J. Math. Anal. Appl. 204: 786–812 ArticleMATHMathSciNet Google Scholar
Saccheri I. and Hanski I. (2006). Natural selection and population dynamics. Trends Ecol. Evolut. 21: 341–347 Article Google Scholar
Shertzer K.W., Ellner S.P., Fussmann G.F. and Hairston N.G. (2002). Predator–prey cycles in an aquatic microcosm: testing hypotheses of mechanism. J. Anim. Ecol. 71: 802–815 Article Google Scholar
Searle S.R. (1982). Matrix Algebra Useful for Statistics. Wiley, New York MATH Google Scholar
Smith H.L. and Waltman P. (1995). The Theory of the Chemostat. Cambridge University Press, Cambridge MATH Google Scholar
Strauss S.Y., Rudgers J.A., Lau J.A. and Irwin R.E. (2002). Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17: 278–285 Article Google Scholar
Thompson J.N. (1998). Rapid evolution as an ecological process. Trends Ecol. Evol. 13: 329–332 Article Google Scholar
Toth D. and Kot M. (2006). Limit cycles in a chemostat model for a single species with age structure. Math. Biosci. 202: 194–217 MATHMathSciNet Google Scholar
Vayenis D.V. and Pavlou S. (1999). Chaotic dynamics of a food web in a chemostat. Math. Biosci. 162: 69–84 Article Google Scholar
Xia H., Wolkowicz G.S.K. and Wang L. (2005). Transient oscillation induced by delayed growth response in the chemostat. J. Math. Biol. 50: 489–530 ArticleMATHMathSciNet Google Scholar
Yoshida T., Jones L.E., Ellner S.P., Fussmann G.F. and Hairston N.G. (2003). Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424: 303–306 Article Google Scholar
Yoshida T., Ellner S.P. and Hairston N.G. (2004). Evolutionary tradeoff between defense against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proc. Roy. Soc. Lond. B. 271: 1947–1953 Article Google Scholar