Impaired daily glucocorticoid rhythm in Per1 Brd mice (original) (raw)
References
Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci USA 99:9026–9030 ArticlePubMedCAS Google Scholar
Albrecht U (2004) The mammalian circadian clock: a network of gene expression. Front Biosci 9:48–55 ArticlePubMedCAS Google Scholar
Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064 ArticlePubMedCAS Google Scholar
Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536 ArticlePubMedCAS Google Scholar
Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347 ArticlePubMedCAS Google Scholar
Bartolomucci A, Pederzani T, Sacerdote P, Panerai AE, Parmigiani S, Palanza P (2004) Behavioral and physiological characterization of male mice under chronic psychosocial stress. PNEC 29:899 Google Scholar
Cavigelli S, Monfort SL, Whitney TK, Mechref YS, Novotny M, McClintock MK (2005) Frequent serial fecal corticoid measures from rats reflect circadian and ovarian corticosterone rhythms. J Endocrinol 184:153–163 ArticlePubMedCAS Google Scholar
Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P (2001) Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. Embo J 20:3967–3974 ArticlePubMedCAS Google Scholar
Cooney GJ, Lyons RJ, Crew AJ, Jensen TE, Molero JC, Mitchell CJ, Biden TJ, Ormandy CJ, James DE, Daly RJ (2004) Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO J 23:582–593 ArticlePubMedCAS Google Scholar
Dallmann R (2004) Characterisation of Per mutant mice. PhD Thesis, University of Hannover, Hannover Google Scholar
Dernbach H (2003) Physiologische Aspekte der circadianen Rhythmik bei Kleinsäugern. Ph.D.-thesis, University of Hannover, Hannover, Germany
Eriksson E, Royo F, Lyberg K, Carlsson HE, Hau J (2004) Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats. Exp Physiol 89:427–433 ArticlePubMedCAS Google Scholar
Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309:109–118 ArticlePubMedCAS Google Scholar
Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16:5555–5565 PubMedCAS Google Scholar
Karl T, Hoffmann T, Pabst R, von Horsten S (2003) Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem Behav 75:869–879 ArticlePubMedCAS Google Scholar
Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16:1099–1106 ArticlePubMed Google Scholar
La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243 ArticlePubMedCAS Google Scholar
Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. Embo J 20:7128–7136 ArticlePubMedCAS Google Scholar
Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206 ArticlePubMedCAS Google Scholar
Palme R, Rettenbacher S, Touma C, El-Bahr SM, Mostl E (2005) Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann N Y Acad Sci 1040:162–171 ArticlePubMedCAS Google Scholar
Penev PD, Kolker DE, Zee PC, Turek FW (1998) Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol 275:H2334–H2337 PubMedCAS Google Scholar
Röhl M, Pasparakis M, Baudler S, Baumgartl J, Gautam D, Huth M, De Lorenzi R, Krone W, Rajewsky K, Bruning JC (2004) Conditional disruption of IkB kinase 2 fails to prevent obesity-induced insulin resistance. J Clin Invest 113:474–481 PubMed Google Scholar
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377 ArticlePubMed Google Scholar
Saba GC, Saba P, Carnicelli A, Marescotti V (1963) Diurnal rhythm in the adrenal cortical secretion and in the rate of metabolism of corticosterone in the rat. Acta Endocrinol (Copenh) 44:409–412 CAS Google Scholar
Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Period2 influences the glutamatergic system and thereby modulates alcohol consumption. Nat Med 11:35–42 ArticlePubMedCAS Google Scholar
Spoelstra K, Albrecht U, van der Horst GT, Brauer V, Daan S (2004) Phase responses to light pulses in mice lacking functional per or cry genes. J Biol Rhythms 19:518–529 ArticlePubMedCAS Google Scholar
Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F, Albrecht U (2002) Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J Biol Rhythms 17:202–209 ArticlePubMedCAS Google Scholar
Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586 ArticlePubMedCAS Google Scholar
Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophilaperiod gene. Cell 90:1003–1011 ArticlePubMedCAS Google Scholar
Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516 ArticlePubMedCAS Google Scholar
Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann N Y Acad Sci 1046:54–74 ArticlePubMedCAS Google Scholar
Touma C, Sachser N, Mostl E, Palme R (2003) Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130:267–278 ArticlePubMedCAS Google Scholar
Touma C, Palme R, Sachser N (2004) Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones. Horm Behav 45:10–22 ArticlePubMedCAS Google Scholar
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308 (5724):1043–1045 ArticlePubMedCAS Google Scholar
Verhagen LA, Pevet P, Saboureau M, Sicard B, Nesme B, Claustrat B, Buijs RM, Kalsbeek A (2004) Temporal organization of the 24-h corticosterone rhythm in the diurnal murid rodent Arvicanthis ansorgei Thomas 1910. Brain Res 995:197–204 ArticlePubMedCAS Google Scholar
Yamamoto H, Nagai K, Nakagawa H (1987) Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol Int 4:483–491 ArticlePubMedCAS Google Scholar
Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173 ArticlePubMedCAS Google Scholar
Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694 ArticlePubMedCAS Google Scholar