A combined microdialysis and FDG-PET study of glucose metabolism in head injury (original) (raw)
References
Archer DP, Elphinstone MG, Pappius HM (1990) The effect of pentobarbital and isoflurane on glucose metabolism in thermally injured rat brain. J Cereb Blood Flow Metab 10:624–630 PubMedCAS Google Scholar
Bartnik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM (2005) Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotrauma 22:1052–1065 ArticlePubMed Google Scholar
Bartnik BL, Hovda DA, Lee PW (2007a) Glucose metabolism after traumatic brain injury: estimation of pyruvate carboxylase and pyruvate dehydrogenase flux by mass isotopomer analysis. J Neurotrauma 24:181–194 ArticlePubMed Google Scholar
Bartnik BL, Lee SM, Hovda DA, Sutton RL (2007b) The fate of glucose during the period of decreased metabolism after fluid percussion injury: a 13C NMR study. J Neurotrauma 24:1079–1092 ArticlePubMed Google Scholar
Bellander BM Cantais E, Enblad P, Hutchinson P, Nordstrom CH, Robertson C, Sahuquillo J, Smith M, Stocchetti N, Ungerstedt U, Unterberg A, Olsen NV (2004) Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 30:2166–2169 Article Google Scholar
Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, Becker DP (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86:241–251 PubMedCAS Google Scholar
Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518 ArticlePubMedCAS Google Scholar
Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24:202–211 ArticlePubMed Google Scholar
Dohmen C, Kumura E, Rosner G, Heiss WD, Graf R (2005) Extracellular correlates of glutamate toxicity in short-term cerebral ischemia and reperfusion: a direct in vivo comparison between white and gray matter. Brain Res 1037:43–51 ArticlePubMedCAS Google Scholar
Dusick JR, Glenn TC, Lee WN, Vespa PM, Kelly DF, Lee SM, Hovda DA, Martin NA (2007) Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. J Cereb Blood Flow Metab 27:1593–1602 ArticlePubMedCAS Google Scholar
Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Langstrom B, Hillered L, Persson L (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644 ArticlePubMedCAS Google Scholar
Engström M, Polito A, Reinstrup P, Romner B, Ryding E, Ungerstedt U, Nordström CH (2005) Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 102:460–469 PubMed Google Scholar
Feng D, Ho D, Chen K, Wu L-C, Wang J-K, Liu R-S, Yeh S-H (1995) An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data. IEEE Trans Med Imag 14:697–710 ArticleCAS Google Scholar
Hattori N, Huang SC, Wu HM, Yeh E, Glenn TC, Vespa PM, McArthur D, Phelps ME, Hovda DA, Bergsneider M (2003) Correlation of regional metabolic rates of glucose with Glasgow Coma Scale after traumatic brain injury. J Nucl Med 44:1709–1716 PubMed Google Scholar
Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41 ArticlePubMed Google Scholar
Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P (2006) Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 12:112–118 ArticlePubMed Google Scholar
Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906 ArticlePubMed Google Scholar
Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82 PubMedCAS Google Scholar
Hutchinson PJ, Hutchinson DB, Barr RH, Burgess F, Kirkpatrick PJ, Pickard JD (2000) A new cranial access device for cerebral monitoring. Br J Neurosurg 14:46–48 ArticlePubMedCAS Google Scholar
Hutchinson PJ, Gupta AK, Fryer TF, Al-Rawi PG, Chatfield DA, Coles JP, O’Connell MT, Kett-White R, Minhas PS, Aigbirhio FI, Clark JC, Kirkpatrick PJ, Menon DK, Pickard JD (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745 ArticlePubMed Google Scholar
Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005) Cerebral microdialysis methodology—evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26:423–428 ArticlePubMedCAS Google Scholar
Kinahan PE, Rogers JG (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36:964–968 ArticleCAS Google Scholar
Lammertsma AA, Brooks DJ, Frackowiak RS, Beaney RP, Herold S, Heather JD, Palmer AJ, Jones T (1987) Measurement of glucose utilisation with [18F]2-fluoro-2-deoxy-D-glucose: a comparison of different analytical methods. J Cereb Blood Flow Metab 7:161–172 PubMedCAS Google Scholar
Lee JY, Kim YH, Koh JY (2001) Protection by pyruvate against transient forebrain ischemia in rats. J Neurosci 21:RC71 Google Scholar
Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529:285–293 ArticlePubMedCAS Google Scholar
McKenna MC, Waagpetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407 ArticlePubMedCAS Google Scholar
Menon DK (1999) Cerebral protection in severe brain injury: physiological determinants of outcome and their optimisation. Br Med Bull 55:226–258 ArticlePubMedCAS Google Scholar
Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689 ArticlePubMedCAS Google Scholar
Noske DP, Peerdeman SM, Comans EF, Dirven CM, Knol DL, Girbes AR, Vandertop WP (2005) Cerebral microdialysis and positron emission tomography after surgery for aneurysmal subarachnoid hemorrhage in grade I patients. Surg Neurol 64:109–115 ArticlePubMedCAS Google Scholar
O’Connell MT, Seal A, Nortje J, Al-Rawi PG, Coles JP, Fryer TD, Menon DK, Pickard JD, Hutchinson PJ (2005) Glucose metabolism in traumatic brain injury: a combined microdialysis and [18F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) study. Acta Neurochir Suppl 95:165–168 ArticlePubMedCAS Google Scholar
Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7 PubMedCAS Google Scholar
Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629 ArticlePubMedCAS Google Scholar
Pellerin L (2003) Lactate as a pivotal element in neuron-glia metabolic co-operation. Neurochem Int 43:331–338 ArticlePubMedCAS Google Scholar
Persson L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76:72–80 PubMedCAS Google Scholar
Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14 ArticlePubMedCAS Google Scholar
Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709 ArticlePubMedCAS Google Scholar
Samuelsson C, Hillered L, Zetterling M, Enblad P, Hesselager G, Ryttlefors M, Kumlien E, Lewén A, Marklund N, Nilsson P, Salci K, Ronne-Engström E (2007) Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 27:1309–1317 ArticlePubMedCAS Google Scholar
Shulman RG, Rothman DL, Hyder F (1999) Stimulated changes in localized cerebral energy consumption under anesthesia. Proc Natl Acad Sci U S A 96:3245–3250 ArticlePubMedCAS Google Scholar
Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791 ArticlePubMedCAS Google Scholar
Spanaki MV, Siegel H, Kopylev L, Fazilat S, Dean A, Liow K, Ben-Menachem E, Gaillard WD, Theodore WH (1999) The effect of vigabatrin (gamma-vinyl GABA) on cerebral blood flow and metabolism. Neurology 53:1518–1522 PubMedCAS Google Scholar
Ungerstedt U (1991) Microdialysis-principles and applications for studies in animals and man. J Intern Med 230:365–373 PubMedCAS Google Scholar
Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774 ArticlePubMedCAS Google Scholar