Ahlman B, Leijonmarck CE, Wernerman J (1993) The content of free amino acids in the human duodenal mucosa. Clin Nutr 12:226–271 Google Scholar
Alican I, Kubes P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol 270:G225–G237 PubMedCAS Google Scholar
Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG, Scott RB (2002) Arginine supplementation prevents neocrotizing enterocolitis in the premature infant. J Pediatr 140:425–431 ArticlePubMedCAS Google Scholar
Aw TY, Williams MW (1992) Intestinal absorption and lymphatic transport of peroxidized lipids in rats: effect of exogenous GSH. Am J Physiol 263:G665–G672 PubMedCAS Google Scholar
Aw TY, Williams MW, Gray L (1992) Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH. Am J Physiol 262:G99–G106 PubMedCAS Google Scholar
Baskerville A, Hambleton P, Benbough JE (1980) Pathologic features of glutaminase toxicity. Br J Exp Pathol 61:132–138 PubMedCAS Google Scholar
Bertolo RFP, Chen CZL, Law G, Pencharz PB, Ball RO (1998) Threonine requirement of neonatal piglets receiving total parenteral nutrition is considerably lower than that of piglets receiving an identical diet intragastrically. J Nutr 128:1752–1759 PubMedCAS Google Scholar
Chambon-Savanovitch C, Farges M, Raul F, Blachier F, Davot P, Cynober L, Vasson M (1999) Can a glutamate-enriched diet counteract glutamine depletion in endotoxemic rats? J Nutr Biochem 10:331–337 ArticlePubMedCAS Google Scholar
Chen LX, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G (2007) In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs. Livest Sci 109:19–23 Article Google Scholar
Corl BA, Odle J, Niu XM, Moeser AJ, Gatlin LA, Phillips OT, Blikslager AT, Rhoads JM (2008) Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavivrus enteritis. J Nutr 138:24–29 PubMedCAS Google Scholar
Domeneghini C, Giancamillo AD, Bosi G, Arrighi S (2006) Can nutraceuticals affect the structure of intestinal mucosa? Qualitative and quantitative microanatomy in L-glutamine diet-supplemented weaning piglets. Vet Res Comm 30:331–342 ArticleCAS Google Scholar
Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefoncu A, Kose T (2000) The prophylactic and therapeutic effects of glutamine- and arginine-enriched diets on radiation-induced enteritis in rats. J Surg Res 89:121–125 ArticlePubMedCAS Google Scholar
Fang ZF, Luo J, Qi ZL, Huang FR, Zhao SJ, Liu MY, Jiang SW, Peng J (2008) Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets. Amino Acids. doi: 10.1007/s00726-008-0110-1
Faure M, Choné F, Mettraux C, Godin JP, Béchereau F, Vuichoud J, Pepet I, Breuillé D, Obled C (2007) Threonine utilization for synthesis of acute phase proteins, intestinal proteins, and mucins is increased during sepsis in rats. J Nutr 137:1802–1807 PubMedCAS Google Scholar
Faure M, Mettraux C, Moennoz D, Godin J, Vuichoud J, Rochat F, Breuillé D, Obled C, Corthésy-Theulaz I (2006) Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats. J Nutr 136:1558–1564 PubMedCAS Google Scholar
Faure M, Moënnoz D, Montigon F, Mettraux C, Breuillé D, Ballèvre O (2005) Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats. J Nutr 135:486–491 PubMedCAS Google Scholar
Field CJ, Johnson IR, Schley PD (2002) Nutrients and their role in host resistance to infection. J Leukoc Biol 71:16–32 PubMedCAS Google Scholar
Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26:219–225 ArticlePubMedCAS Google Scholar
Frankel WL, Zhang W, Afonso J, Klurfeld DM, Don SH, Laitin E, Deaton D, Furth EE, Pietra GG, Naji A (1993) Glutamine enhancement of structure and function in transplanted small intestine in the rat. J Parenter Enteral Nutr 17:47–55 ArticleCAS Google Scholar
Gewirtz AT, Liu Y, Sitaraman SV, Madara JL (2002) Intestinal epithelial pathobiology: past, present and future. Best Pract Res Clin Gastroenterol 16:851–867 ArticlePubMedCAS Google Scholar
Grimble RF (2006) The effects of sulfur amino acids intake on immune function in humans. J Nutr 136:1660S–1665S PubMedCAS Google Scholar
Gu XH (2000) Effects of weaning day, dietary protein and lysine levels on digestive organ structure and function in early-weaned piglets. Ph.D. thesis (in Chinese). China Agricultural University, Beijing, China
Gurbuz AT, Kunzelman J, Ratzer EE (1998) Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats. J Surg Res 74:149–154 ArticlePubMedCAS Google Scholar
Hasebe M, Suzuki H, Mori E, Furukawa J, Kobayashi K, Ueda Y (1999) Glutamate in enteral nutrition: can glutamate replace glutamine in supplementation to enteral nutrition in burned rats? J Parenter Enteral Nutr 23:S78–S82 ArticleCAS Google Scholar
Hutter DE, Till BG, Greene JJ (1997) Redox state changes in density-dependent regulation of proliferation. Exp Cell Res 232:435–438 ArticlePubMedCAS Google Scholar
Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163 PubMedCAS Google Scholar
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588 ArticlePubMedCAS Google Scholar
Kanwar S, Wallace JL, Befus D, Kubes P (1994) Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol 266:G222–G229 PubMedCAS Google Scholar
Le Floc’h N, Sève B (2005) Catabolism through the threonine dehydrogenase pathway does not account for the high first-pass extraction rate of dietary threonine by the portal drained viscera in pigs. Br J Nutr 93:447–456 ArticlePubMedCAS Google Scholar
Lee MA, McCauley RD, Kong SE, Hall JC (2002) Influence of glycine on intestinal ischemia-reperfusion injury. J Parenter Enteral Nutr 26:130–135 ArticleCAS Google Scholar
Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252 ArticlePubMedCAS Google Scholar
Martensson J, Jain A, Meister A (1989) Glutathione is required for intestinal function. Proc Natl Acad Sci USA 87:1715–1719 Article Google Scholar
McCafferty DM, Miampamba M, Sihota E, Sharkey KA, Kubes P (1999) Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut 45:864–873 ArticlePubMedCAS Google Scholar
McCafferty DM, Mudgett JS, Swain MG, Kubes P (1997) Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gatroenterology 112:1022–1027 ArticleCAS Google Scholar
Meijer AJ (2003) Amino acids as regulators and components of nonproteinogenic pathways. J Nutr 133:2057S–2062S PubMedCAS Google Scholar
Mueller AR, Platz KP, Heckert C, Häusler M, Radke C, Neuhaus P (1998) L-arginine application improves mucosal structure after small bowel transplantation. Transplant Proc 30:2336–2338 ArticlePubMedCAS Google Scholar
Mueller AR, Platz KP, Schirmeier A, Nüssler NC, Seehofer D, Schmitz V, Nüssler AK, Radke C, Neuhaus P (2000) l-arginine application improves graft morphology and mucosal barrier function after small bowel transplantation. Transplant Proc 32:1275–1277 ArticlePubMedCAS Google Scholar
Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP (2002) Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol 283:G1352–G1359 CAS Google Scholar
Qin HL, Cui HG, Zhang CH, Wu DW, Chu XP (1996) Effects of glutamine on structure and function of gut in endotoxemic rats. China Natl J New Gastroenterol 2:69–72 Google Scholar
Redmond HP, Stapleton PP, Neary P, Bouchier-Hayes D (1998) Immunonutrition: the role of taurine. Nutrition 14:599–604 ArticlePubMedCAS Google Scholar
Reeds PJ, Burrin DG, Jahoor F, Wykes L, Henry J, Frazer EM (1996) Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am J Physiol 270:E413–E418 PubMedCAS Google Scholar
Reeds PJ, Burrin DG, Stoll B, Jahoor F, Wykes L, Henry J, Frazer ME (1997) Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 273:E408–E415 PubMedCAS Google Scholar
Rhoads JM, Chen W, Gookin J, Wu GY, Fu Q, Blikslager AT, Rippe RA, Argenzio RA, Cance WG, Weaver EM, Romer LH (2004) Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut 53:514–522 ArticlePubMedCAS Google Scholar
Rhoads JM, Niu XM, Surendran S, Liu YY, Wu G (2008) Arginine stimulates intestinal epithelial cell migration via a mechanism requiring both nitric oxide and p70s6k signaling. J Nutr (in press)
Roig-Pérez S, Guardiola F, Moretó M, Ferrer R (2004) Lipid peroxidation induced by DHA enrichment modifies paracellular permeability in Caco-2 cells: protective role of taurine. J Lipid Res 45:1418–1428 ArticlePubMedCAS Google Scholar
Schaart MW, Schierbeek H, van der Schoor SRD, Stoll B, Burrin DG, Reeds PJ, van Goudoever JB (2005) Threonine utilization is high in the intestine of piglets. J Nutr 135:765–770 PubMedCAS Google Scholar
Schleiffer R, Raul F (1996) Prophylactic administration of L-arginine improves the intestinal barrier function after mesenteric ischaemia. Gut 39:194–198 ArticlePubMedCAS Google Scholar
Shaw JP, Chou IN (1986) Elevation of extracellular glutathione content associated with mitogenic stimulation of quiescent fibroblast. J Cell Physiol 129:193–198 ArticlePubMedCAS Google Scholar
Shoveller AK, Brunton JA, House JD, Pencharz PB, Ball RO (2003) Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets. J Nutr 133:4215–4224 PubMedCAS Google Scholar
Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614 PubMedCAS Google Scholar
Sukhotnik I, Mogilner J, Krausz MM, Lurie M, Hirsh M, Coran AG, Shiloni E (2004) Oral arginine reduces gut mucosal injury caused by lipolysaccharide end toxemia in rat. J Surg Res 122:256–262 ArticlePubMedCAS Google Scholar
Thomas S, Prabhu R, Balasubramanian KA (2005) Surgical manipulation of the intestine and distant organ damage-protection by oral glutamine supplementation. Surgery 137:48–55 ArticlePubMed Google Scholar
Van Goudoever JB, Stoll B, Henry JF, Burrin DG, Reeds PJ (2000) Adaptive regulation of intestinal lysine metabolism. Proc Natl Acad Sci USA 97:11620–11625 ArticlePubMed Google Scholar
Wang JJ, Chen LX, Li P, Li XL, Zhou HJ, Wang FL, Li DF, Yin YL, Wu G (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032 PubMedCAS Google Scholar
Wang X, Qiao SY, Yin YL, Yue LY, Wang ZY, Wu G (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446 PubMedCAS Google Scholar
Wingler K, Muller C, Schmehl K, Florian S, Brigelius-Flohe R (2000) Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in CaCo-2 cells. Gastroenterology 119:420–430 ArticlePubMedCAS Google Scholar
Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252 PubMedCAS Google Scholar
Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22 Article Google Scholar
Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004a) Glutathione metabolism and its implications for health. J Nutr 134:489–492 PubMedCAS Google Scholar
Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004b) Arginine deficiency in premature infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451 ArticlePubMedCAS Google Scholar
Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584 PubMedCAS Google Scholar
Wu GY, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17 PubMedCAS Google Scholar
Zhan ZF, Ou DY, Piao XS, Kim SW, Liu YH, Wang JJ (2008) Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs. J Nutr 138:1304–1309 PubMedCAS Google Scholar