The crystal structure of auracyanin A at 1.85 Å resolution: the structures and functions of auracyanins A and B, two almost identical “blue” copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus (original) (raw)

Abstract

Auracyanins A and B are two closely similar “blue” copper proteins produced by the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Both proteins have a water-soluble 140-residue globular domain, which is preceded in the sequence by an N-terminal tail. The globular domains of auracyanins A and B have sequences that are 38% identical. The sequences of the N-terminal tails, on the other hand, are distinctly different, suggesting that auracyanins A and B occupy different membrane sites and have different functions. The crystal structure of auracyanin A has been solved and refined at 1.85 Å resolution. The polypeptide fold is similar to that of auracyanin B (Bond et al. in J Mol Biol 306:47–67, 2001), but the distribution of charged and polar residues on the molecular surface is different. The Cu-site dimensions of the two auracyanins are identical. This is unexpected, since auracyanin A has a shorter polypeptide loop between two of the Cu-binding residues, and the two proteins have significantly different EPR, UV–visible and resonance Raman spectra. The genes for the globular domains of auracyanins A and B have been cloned in a bacterial expression system, enabling purification of large quantities of protein. It is shown that auracyanin A is expressed only when C. aurantiacus cells are grown in light, whereas auracyanin B is expressed under dark as well as light conditions. The inference is that auracyanin A has a function in photosynthesis, and that auracyanin B has a function in aerobic respiration.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCIP:

5-Bromo-4-chloro-3-indolyl phosphate

Chx:

Chloroflexus aurantiacus

DFT:

Density functional theory

DPI:

Diffraction data precision indicator

ESU:

Estimated standard uncertainty

EXAFS:

Extended X-ray absorption fine structure

MALDI-TOF:

Matrix-assisted laser desorption ionization-time-of-flight

MW:

Molecular weight

NBT:

Nitro blue tetrazolium chloride

RMS:

Root-mean-square

XANES:

X-ray absorption near-edge structure

XAS:

X-ray absorption spectroscopy

References

  1. Bond CS, Blankenship RE, Freeman HC, Guss JM, Maher MJ, Selvaraj FM, Wilce MC, Willingham KM (2001) J Mol Biol 306:47–67
    Article CAS PubMed Google Scholar
  2. Lopez JC, Dracheva S, Blankenship RE (1996)
  3. McManus JD, Brune DC, Han J, Sanders-Loehr J, Meyer TE, Cusanovich MA, Tollin G, Blankenship RE (1992) J Biol Chem 267:6531–6540
    CAS PubMed Google Scholar
  4. Van Driessche G, Hu W, Van de Werken G, Selvaraj F, McManus JD, Blankenship RE, Van Beeumen JJ (1999) Protein Sci 8:947–957
    Article PubMed Google Scholar
  5. Rooney MB, Honeychurch MJ, Selvaraj FM, Blankenship RE, Bond AM, Freeman HC (2003) J Biol Inorg Chem 8:306–317
    CAS PubMed Google Scholar
  6. Lee M, Maher MJ, Freeman HC, Guss JM (2003) Acta Crystallogr D Biol Crystallogr 59:1545–1550
    Article PubMed Google Scholar
  7. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    Google Scholar
  8. Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez JC, Hochstrasser DF, Appel RD (1997) Electrophoresis 18:403–408
    Article CAS PubMed Google Scholar
  9. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326
    Article CAS Google Scholar
  10. Navaza J (1994) Acta Crystallogr D Biol Crystallogr 55:157–163
    Google Scholar
  11. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255
    Article CAS PubMed Google Scholar
  12. Bruenger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921
    Article Google Scholar
  13. Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) Acta Crystallogr D Biol Crystallogr 57:1445–1450
    Article CAS PubMed Google Scholar
  14. Perrakis A, Morris R, Lamzin VS (1999) Nat Struct Mol Biol 6:458–463
    Article CAS Google Scholar
  15. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr Sect A Found Crystallogr 47:110–119
    Article Google Scholar
  16. Lovell C, Davis IW, Arendall WBI, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Proteins Struct Funct Bioinform 50:437–450
    Article CAS Google Scholar
  17. Vriend G (1990) J Mol Graph Model 8:52–56
    CAS Google Scholar
  18. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576
    Article CAS Google Scholar
  19. Garrity GM, Holt JG (2001) In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 427–444
  20. McManus JD (1990) Chemistry and biochemistry. Arizona State University, Tempe
    Google Scholar
  21. Amersham-Biosciences (2002) Uppsala, pp 160
  22. Schagger H, von Jagow G (1987) Anal Biochem 166:368–379
    Article CAS PubMed Google Scholar
  23. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402
    Article CAS PubMed Google Scholar
  24. Cruickshank DW (1999) Acta Crystallogr D Biol Crystallogr 55:583–601
    Article CAS PubMed Google Scholar
  25. Crane BR, Di Billio AJ, Winkler JR, Gray HB (2001) J Am Chem Soc 123:11623–11631
    Article CAS PubMed Google Scholar
  26. Li C, Banfield MJ, Dennison C (2007) J Am Chem Soc 129:709–718
    Article CAS PubMed Google Scholar
  27. Engman KC, Sandberg A, Leckner J, Karlsson BG (2004) Protein Sci 13:2706–2715
    Article CAS PubMed Google Scholar
  28. Kleywegt GJ, Jones TA (1997) Methods Enzymol 277:525–545
    Article CAS PubMed Google Scholar
  29. Foster JM, Redlinger TE, Blankenship RE, Fuller RC (1986) J Bacteriol 167:655–659
    CAS PubMed Google Scholar
  30. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell, Oxford
    Book Google Scholar
  31. Yanyushin MF (2002) FEBS Lett 512:125–128
    Article CAS PubMed Google Scholar
  32. Yanyushin MF, del Rosario MC, Brune DC, Blankenship RE (2005) Biochemistry (Washington) 44:10037–10045
    Article CAS Google Scholar
  33. Pereira MM, Refojo PN, Hreggvidsson GO, Hjorleifsdottir S, Teixeira M (2007) FEBS Lett 581:4831–4835
    Article CAS PubMed Google Scholar
  34. Hale MB, Blankenship RE, Fuller RC (1983) Biochim Biophys Acta Gene Struct Expr 723:376–382
    Article CAS Google Scholar
  35. Andrew CR, Yeom H, Valentine JS, Karlsson BG, Bonander N, Van Pouderoyen G, Canters GW, Loehr TM, Sanders-Loehr J (1994) J Am Chem Soc 116:11489–11498
    Article CAS Google Scholar
  36. Han J, Loehr TM, Lu Y, Valentine JS, Averill BA, Sandersloehr J (1993) J Am Chem Soc 115:4256–4263
    Article CAS Google Scholar
  37. Lu Y, LaCroix LB, Lowery MD, Solomon EI, Bender CJ, Peisach J, Roe JA, Gralla EB, Valentine JS (1993) J Am Chem Soc 115:5907–5918
    Article CAS Google Scholar
  38. Comba P, Mueller V, Remenyi R (2004) J Inorg Biochem 98:896–902
    Article CAS PubMed Google Scholar
  39. Pierloot K, De Kerpel JOA, Ryde U, Olsson MHM, Roos BO (1998) J Am Chem Soc 120:13156–13166
    Article CAS Google Scholar
  40. Buning C, Canters GW, Comba P, Dennison C, Jenken L, Melter M, Sanders-Loehr J (2000) J Am Chem Soc 122:204–211
    Article CAS Google Scholar
  41. Solomon EI, Szilagyi RK, George SD, Basumallick L (2004) Chem Rev 104:419–458
    Article CAS PubMed Google Scholar
  42. LaCroix LB, Shadle SE, Wang Y, Averill BA, Hedman B, Hodgson KO, Solomon EI (1996) J Am Ceram Soc 118:7755–7768
    CAS Google Scholar
  43. Dennison C (2008) Nat Prod Rep 25:15–24
    Article CAS PubMed Google Scholar
  44. Li C, Yanagisawa S, Martins BM, Messerschmidt A, Banfield MJ, Dennison C (2006) Proc Natl Acad Sci USA 103:7258–7263
    Article CAS PubMed Google Scholar
  45. Xin Y, Lin S, Blankenship RE (2007) J Phys Chem A 111:9367–9373
    Article CAS PubMed Google Scholar

Download references

Acknowledgments

Support from the Australian Research Council (Grant DP0208320 to JMG and HCF), the Molecular Biochemistry program of the National Science Foundation (Grant MCB0646621 to REB), and the Australian Access to Major Research Facilities program (travel grant to HHH and HCF) is gratefully acknowledged. The Stanford Synchrotron Research Laboratory is a US national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. We thank Stephen Graham for recording X-ray diffraction data, and Christopher Dennison, Graham George and Edward Solomon for helpful discussions.

Author information

Authors and Affiliations

  1. Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287, USA
    Melissa C. del Rosario
  2. School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
    Hugh H. Harris
  3. Departments of Biology and Chemistry, Washington University in St Louis, St Louis, MO, 63130, USA
    Robert E. Blankenship
  4. School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, 2006, Australia
    Mihwa Lee, J. Mitchell Guss & Hans C. Freeman

Authors

  1. Mihwa Lee
    You can also search for this author inPubMed Google Scholar
  2. Melissa C. del Rosario
    You can also search for this author inPubMed Google Scholar
  3. Hugh H. Harris
    You can also search for this author inPubMed Google Scholar
  4. Robert E. Blankenship
    You can also search for this author inPubMed Google Scholar
  5. J. Mitchell Guss
    You can also search for this author inPubMed Google Scholar
  6. Hans C. Freeman
    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toRobert E. Blankenship or J. Mitchell Guss.

Additional information

H. C. Freeman passed away in November 2008 shortly before he could submit the final manuscript. The remaining authors dedicate this paper to his memory in recognition of his pioneering research on Cu proteins.

Electronic supplementary material

Rights and permissions

About this article

Cite this article

Lee, M., del Rosario, M.C., Harris, H.H. et al. The crystal structure of auracyanin A at 1.85 Å resolution: the structures and functions of auracyanins A and B, two almost identical “blue” copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus .J Biol Inorg Chem 14, 329–345 (2009). https://doi.org/10.1007/s00775-009-0473-0

Download citation

Keywords