Star compass learning: how long does it take? (original) (raw)
Abstract
Young night-migratory birds establish a functional star compass during ontogeny by searching the starry night sky for its centre of rotation and interpreting this as “north”. The birds then use the learned location of the rotational centre to calibrate their magnetic compass. Here, we examine the required duration of this learning process. We exposed three groups of hand-raised inexperienced European Robins Erithacus rubecula to a rotating artificial star pattern for 3 weeks, 1 week, or 1 night, respectively, during ontogeny. A control group was exposed to the same, but stationary, artificial star pattern for 3 weeks. During their first autumn migration, we tested the birds’ orientation under the stationary star pattern as well as in the local geomagnetic field with no stars visible. Only the group that had the longest exposure time to celestial rotation during ontogeny was able to show orientation in the appropriate direction during autumn migration in the local geomagnetic field in relation to the memorized former centre of celestial rotation. This suggests that these birds had calibrated their magnetic compass relative to the star pattern seen during ontogeny. All other groups showed inappropriate or random orientation both under the stationary star sky and in the local geomagnetic field, suggesting that 7 nights of observing celestial rotation are not sufficient for young European Robins to establish a star compass and to calibrate their magnetic compass accordingly.
Zusammenfassung
Das Erlernen des Sternenkompasses: Wie lange brauchen Zugvögel dafür?
Junge, nachts ziehende Singvögel entwickeln einen Sternenkompass während ihrer Ontogenie, indem sie den nächtlichen Sternenhimmel beobachten, das Rotationszentrum ermitteln und dieses für sich als “Norden” interpretieren. Anschließend wird mit Hilfe dieses Wissens über die Lage des Sternen- Nordens ihr magnetischer Kompass kalibriert. In der vorliegenden Studie untersuchen wir, wie lange Vögel für diesen Lernprozess benötigen. Wir bildeten drei Gruppen von jungen, unerfahrenen, handaufgezogenen Rotkehlchen Erithacus rubecula und präsentierten ihnen für jeweils drei Wochen, eine Woche bzw. nur eine Nacht ein künstliches, rotierendes Sternenmuster. Während ihres ersten Herbstzuges testeten wir die Vögel sowohl unter dem stationären Sternenmuster als auch im lokalen Erdmagnetfeld ohne sichtbares Sternenmuster. Lediglich die Gruppe, die während der Ontogenie am längsten den rotierenden Sternenhimmel beobachten durfte, konnte eine entsprechende Orientierung im lokalen Erdmagnetfeld bezüglich des erinnerten Rotationsfixpunktes zeigen. Dies legt nahe, dass diese Vögel während ihrer Ontogenie ihren Magnetkompass bezüglich des Sternenmusters kalibriert haben. Alle anderen Gruppen zeigten weder unter dem Sternenmuster noch im lokalen Erdmagnetfeld eine angemessene Zugrichtung. Das deutet darauf hin, dass sieben Nächte Beobachtung des rotierenden Sternenhimmels während der Ontogenie nicht ausreichen den Sternenkompass zu lernen und den Magnetkompass entsprechend zu kalibrieren.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Able KP, Able MA (1990a) Ontogeny of migratory orientation in the Savannah Sparrow, Passerculus sandwichensis: calibration of the magnetic compass. Anim Behav 39:905–913
Article Google Scholar - Able KP, Able MA (1990b) Calibration of the magnetic compass of a migratory bird by celestial rotation. Nature 347:378–380
Article Google Scholar - Able KP, Bingman VP (1987) The development of orientation and navigation behavior in birds. Q Rev Biol 62:1–29
Article Google Scholar - Åkesson S, Morin J, Muheim R, Ottosson U (2002) Avian orientation: effects of cue-conflict experiments with young migratory songbirds in the high Arctic. Anim Behav 64:469–475
Article Google Scholar - Alerstam T, Högstedt G (1983) The role of the geomagnetic field in the development of birds’ compass sense. Nature 306:463–465
Article Google Scholar - Batschelet E (1981) Circular statistics in biology. Academic, London
Google Scholar - Beason RC (1987) Interaction of visual and non-visual cues during migratory orientation by the Bobolink (Dolichonyx oryzivorus). J Ornithol 128:317–324
Article Google Scholar - Beason RC (1992) You can get there from here: responses to simulated magnetic equator crossing by the Bobolink (Dolichonyx oryzivorus). Ethology 91:75–80
Article Google Scholar - Beck W, Wiltschko W (1982) The magnetic field as a reference system for genetically encoded migratory direction in Pied Flycatchers (Ficedula hypoleuca Pallas). Z Tierpsychol 60:41–46
Article Google Scholar - Berndt R, Winkel W (1979) Verfrachtungs-Experimente zur Frage der Geburtsortsprägung beim Trauerschnäpper (Ficedula hypoleuca). J Ornithol 120:41–53
Article Google Scholar - Berthold P, Helbig AJ (1992) The genetics of bird migration: stimulus, timing, and direction. Ibis 134:35–40
Google Scholar - Bingman VP (1981) Savannah Sparrows have a magnetic compass. Anim Behav 29:962–963
Article Google Scholar - Bingman VP (1983) Magnetic field orientation of migratory Savannah Sparrows with different first summer experience. Behaviour 87:43–53
Article Google Scholar - Bingman VP (1984) Night sky orientation of migratory pied flycatchers raised in different magnetic fields. Behav Ecol Sociobiol 15:77–80
Article Google Scholar - Bischof HJ (2007) Behavioral and neuronal aspects of developmental sensitive periods. NeuroReport 18:461–465
Article PubMed Google Scholar - Bletz H, Weindler R, Wiltschko R, Wiltschko W, Berthold P (1996) The magnetic field as reference for the innate migratory direction in Blackcaps, Sylvia atricapilla. Naturwissenschaften 83:430–432
CAS Google Scholar - Chernetsov N, Kishkinev D, Kosarev V, Bolshakov CV (2011) Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J Exp Biol 214:2540–2543
Article PubMed Google Scholar - Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408
Article CAS PubMed Google Scholar - Emlen ST (1967a) Migratory orientation in the Indigo Bunting, Passerina cyanea. Part I: evidence for use of celestial cues. Auk 84:309–342
Article Google Scholar - Emlen ST (1967b) Migratory orientation in the Indigo Bunting, Passerina cyanea. Part II: mechanism of celestial orientation. Auk 84:463–489
Article Google Scholar - Emlen ST (1969) The development of migratory orientation in young Indigo Buntings. Living Bird 8:113–126
Google Scholar - Emlen ST (1970) Celestial rotation: its importance in the development of migratory orientation. Science 170:1198–1201
Article CAS PubMed Google Scholar - Emlen ST (1972) The ontogenic development of orientation capabilities. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Avian orientation and navigation. NASA, Washington, pp 191–210 Special publication 262
Google Scholar - Emlen ST, Emlen JT (1966) A technique for recording migratory orientation of captive birds. Auk 83:361–367
Article Google Scholar - Engels S, Hein CM, Lefeldt N, Prior H, Mouritsen H (2012) Night-migratory songbirds possess a magnetic compass in both eyes. PLoS ONE 7:e43271
Article CAS PubMed Central PubMed Google Scholar - Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48
PubMed Google Scholar - Hein CM, Engels S, Kishkinev D, Mouritsen H (2011) Robins have a magnetic compass in both eyes. Nature 471:E11–E12
Article PubMed Google Scholar - Kramer G (1950) Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378
Article Google Scholar - Liu X, Chernetsov N (2012) Avian orientation: multi-cue integration and calibration of compass systems. Chin Birds 3:1–8
Article Google Scholar - Löhrl H (1959) Zur Frage des Zeitpunktes einer Prägung auf die Heimatregion beim Halsbandschnäpper (Ficedula albicollis). J Ornithol 100:132–140
Article Google Scholar - Merkel FW, Wiltschko W (1965) Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula). Vogelwarte 23:71–77
Google Scholar - Moore FR (1978) Sunset and the orientation of a nocturnal migrant bird. Nature 274:154–156
Article Google Scholar - Mouritsen H (2003) Spatiotemporal orientation strategies of long-distance migrants. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 493–513
Chapter Google Scholar - Mouritsen H, Larsen ON (2001) Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass. J Exp Biol 204:3855–3865
CAS PubMed Google Scholar - Mouritsen H, Mouritsen O (2000) A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J Theor Biol 207:283–291
Article CAS PubMed Google Scholar - Mouritsen H, Feenders G, Hegemann A, Liedvogel M (2009) Thermal paper can replace typewriter correction paper in Emlen funnels. J Ornithol 150:713–715
Article Google Scholar - Muheim R, Phillips JB, Åkesson S (2006a) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839
Article CAS PubMed Google Scholar - Muheim R, Moore FR, Phillips JB (2006b) Calibration of magnetic and celestial compass cues in migratory birds—a review of cue-conflict experiments. J Exp Biol 209:2–17
Article PubMed Google Scholar - Mukhin A, Kosarev V, Ktitorov P (2005) Nocturnal life of young songbirds well before migration. Proc R Soc Lond B 272:1535–1539
Article Google Scholar - Prinz K, Wiltschko W (1992) Migratory orientation of Pied Flycatchers: interaction of stellar and magnetic information during ontogeny. Anim Behav 44:539–545
Article Google Scholar - Sauer F (1956) Zugorientierung einer Mönchsgrasmücke (Sylvia a. atricapilla, L.) unter künstlichem Sternenhimmel. Naturwissenschaften 43:231–232
Article Google Scholar - Sauer F (1957) Die Sternenorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin und curruca). Z Tierpsychol 14:29–70
Google Scholar - Shumakov ME, Zelenova NP (1988) Ontogenesis of nonvisual orientation of Blackcaps (Sylvia atricapilla) In: Abstracts of the XII eastern Baltic ornithological conference, Vilnius, pp 255–257
- Weindler P, Beck W, Liepa V, Wiltschko W (1995) Development of migratory orientation in Pied Flycatchers in different magnetic inclinations. Anim Behav 49:227–234
Article Google Scholar - Weindler P, Wiltschko R, Witschko W (1996) Magnetic information affects the stellar orientation of young bird migrants. Nature 383:158–160
Article CAS Google Scholar - Weindler P, Baumetz M, Wiltschko W (1997) The direction of celestial rotation influences the development of stellar orientation in young Garden Warblers (Sylvia borin). J Exp Biol 200:2107–2113
PubMed Google Scholar - Wiltschko W, Gwinner E (1974) Evidence for an innate magnetic compass in Garden Warblers. Naturwissenschaften 61:406
Article CAS PubMed Google Scholar - Wiltschko W, Wiltschko R (1972) Magnetic compass of European Robins. Science 176:62–64
Article CAS PubMed Google Scholar - Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night-migrating birds. J Comp Physiol 109:91–99
Article Google Scholar - Wiltschko W, Gwinner E, Wiltschko R (1980) The effect of celestial cues on the ontogeny of non-visual orientation in the Garden Warbler (Sylvia borin). Z Tierpsychol 53:1–8
Article CAS PubMed Google Scholar - Wiltschko W, Daum P, Fergenbauer-Kimmel A, Wiltschko R (1987) The development of the star compass in Garden Warblers, Sylvia borin. Ethology 74:285–292
Article Google Scholar - Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild M, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277
Article CAS PubMed Google Scholar
Acknowledgments
We thank Thomas Geiger and co-workers of the electronic and mechanical workshops of the University of Oldenburg for constructing the star test chambers and Dr. Nils-Lasse Schneider for technical support. We also thank Prof. Dr. Franz Bairlein for his generous support in allowing us to use the excellent facilities of the Institute of Avian Research, Wilhelmshaven, Germany, Kane Brides for assistance to find nests, and Andreas Lischke who provided essential help with hand-raising birds. We thank Inka Spiller, Maike Gärtner, Laura Ziegenbalg and Hanna Seekamp for help with conducting the experiments. Financial funding was provided by the German Federal Ministry of Education and Research (BMBF; “Varying Tunes”, 01 GQ 0962 to H.M.), the DFG (MO 1408/1-2 to H.M.), and the Volkswagenstiftung (Lichtenberg Professur to H.M.).
Author information
Authors and Affiliations
- Institut für Biologie und Umweltwissenschaften, University of Oldenburg, 26111, Oldenburg, Germany
Andreas Michalik, Bianca Alert, Svenja Engels, Nele Lefeldt & Henrik Mouritsen - Research Centre for Neurosensory Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
Andreas Michalik, Bianca Alert, Svenja Engels, Nele Lefeldt & Henrik Mouritsen
Authors
- Andreas Michalik
You can also search for this author inPubMed Google Scholar - Bianca Alert
You can also search for this author inPubMed Google Scholar - Svenja Engels
You can also search for this author inPubMed Google Scholar - Nele Lefeldt
You can also search for this author inPubMed Google Scholar - Henrik Mouritsen
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toAndreas Michalik or Henrik Mouritsen.
Additional information
Communicated by N. Chernetsov.
A. Michalik and B. Alert contributed equally to this paper.
Rights and permissions
About this article
Cite this article
Michalik, A., Alert, B., Engels, S. et al. Star compass learning: how long does it take?.J Ornithol 155, 225–234 (2014). https://doi.org/10.1007/s10336-013-1004-x
- Received: 17 January 2013
- Revised: 24 July 2013
- Accepted: 13 August 2013
- Published: 29 August 2013
- Issue Date: January 2014
- DOI: https://doi.org/10.1007/s10336-013-1004-x