Role of Animal Models in Coronary Stenting (original) (raw)

References

  1. Ali, Z. A., N. J. Alp, H. Lupton, N. Arnold, T. Bannister, Y. Hu, S. Mussa, M. Wheatcroft, D. Greaves, J. Gunn, and K. Channon. Increased in-stent stenosis in ApoE knockout mice: insights from a novel mouse model of balloon angioplasty and stenting. Arterioscler. Thromb. Vasc. Biol. 27:833–840, 2007.
    Article CAS PubMed Google Scholar
  2. Balakrishnan, B., A. R. Tsafriri, P. Seifert, A. Groothuis, C. Rogers, and E. R. Edelman. Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents. Circulation 111:2958–2965, 2005.
    Article PubMed Google Scholar
  3. Bauters, C., T. Meurice, M. Hamon, E. McFadden, J. M. Lablanche, and M. E. Bertrand. Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc. Res. 31:835–846, 1996.
    Article CAS PubMed Google Scholar
  4. Caiazzo, A., D. Evans, J.-L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorf, B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, and A. Hoekstra. A complex automata approach for in-stent restenosis: two-dimensional multiscale modeling and simulations. J Comput. Sci. 2:9–17, 2011.
    Article Google Scholar
  5. Caro, C. G., A. Seneviratne, K. B. Heraty, C. Monaco, M. G. Burke, R. Krams, C. C. Chang, P. Gilson, and G. Coppola. Intimal hyperplasia following implantation of helical centreline and straight centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow. J. R. Soc. Interface 10(89):20130578, 2013.
    Article PubMed Central PubMed Google Scholar
  6. Carrozza, J. P., S. E. Hosley, D. J. Cohen, and D. S. Baim. In vivo assessment of stent expansion and recoil in normal porcine coronary arteries: differential outcome by stent design. Circulation 100:756–760, 1999.
    Article PubMed Google Scholar
  7. Carter, A. J., M. Aggarwal, G. A. Kopia, F. Tio, T. S. Tsao, R. Kolata, A. C. Yeung, G. Llanos, J. Dooley, and R. Falotico. Long term effects of polymer-based, slow release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc. Res. 63:617–624, 2004.
    Article CAS PubMed Google Scholar
  8. Carter, A. J., J. R. Laird, A. Farb, W. Kufs, D. C. Wortham, and R. Virmani. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J. Am. Coll. Cardiol. 24:1398–1405, 1994.
    Article CAS PubMed Google Scholar
  9. Carter, A. J., J. R. Laird, W. M. Kufs, L. Bailey, T. G. Hoopes, T. Reeves, A. Farb, and R. Virmani. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. J. Am. Coll. Cardiol. 27:1270–1277, 1996.
    Article CAS PubMed Google Scholar
  10. Carter, A. J., D. Scott, D. Rahdert, L. Bailey, J. De Vries, K. Ayerdi, T. Turnlund, R. Jones, R. Virmani, and T. A. Fischell. Stent design favourably influences the vascular response in normal porcine coronary arteries. J. Invasive Cardiol. 11:127–134, 1999.
    CAS PubMed Google Scholar
  11. Chamberlain, J., M. Wheatcroft, N. Arnold, H. Lupton, D. C. Crossman, J. Gunn, and S. Francis. A novel mouse model of in situ stenting. Cardiovasc. Res. 85:38–44, 2010.
    Article PubMed Central CAS PubMed Google Scholar
  12. Curtin, A. E., and L. Zhou. An agent-based model of the response to angioplasty and bare metal stent deployment in an atherosclerotic blood vessel. PLoS One 9:e9441, 2014.
    Article Google Scholar
  13. De Meyer, S. F., S. Staelens, P. N. Badenhorst, H. Pieters, S. Lamprecht, J. Roodt, S. Janssens, M. Meiring, K. Vanhoorelbeke, A. Bruwer, S. Brown, and H. Deckmyn. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor-collagen interaction in baboons. Thromb. Haemost. 98:1343–1349, 2007.
    PubMed Google Scholar
  14. Dean, C. J., A. C. Morton, N. D. Arnold, D. R. Hose, D. C. Crossman, and J. Gunn. Relative importance of the components of stent geometry to stretch-induced in-stent neointima formation. Heart 91:1603–1604, 2005.
    Article PubMed Central CAS PubMed Google Scholar
  15. Finn, A. V., H. K. Gold, A. Tang, D. K. Weber, T. N. Wight, A. Clermont, R. Virmani, and F. D. Kolodgie. A novel rat model of carotid artery stenting for the understanding of restenosis in metabolic diseases. J. Vasc. Res. 39:414–425, 2002.
    Article CAS PubMed Google Scholar
  16. Gallo, R., A. Padurean, T. Jayaraman, S. Marx, M. Roque, S. Adelman, J. Chesebro, J. Fallon, V. Fuster, A. Marks, and J. J. Badimon. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 99:2164–2170, 1999.
    Article CAS PubMed Google Scholar
  17. Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, and C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101:812–818, 2000.
    Article CAS PubMed Google Scholar
  18. Grinstead, W. C., G. P. Rodgers, W. Mazur, B. A. French, D. Cromeens, C. Van Pelt, S. M. West, and A. E. Raizner. Comparison of three porcine restenosis models: the relative importance of hypercholesterolemia, endothelial abrasion, and stenting. Coron. Art. Dis. 5:425–434, 1994.
    Article CAS Google Scholar
  19. Grüntzig, A., H. H. Riedhammer, M. Turina, and W. Rutishauser. A new method for the percutaneous dilation of coronary stenoses in animal experiment. Verh. Dtsch. Ges. Kreislaufforsch. 42:282–285, 1976.
    Article PubMed Google Scholar
  20. Gunn, J., K. H. Chan, N. Arnold, L. Shepherd, D. Cumberland, and D. Crossman. Coronary artery stretch vs. deep injury in the development of in-stent neointima. Heart 88:401–405, 2002.
    Article PubMed Central CAS PubMed Google Scholar
  21. Gupta, G. K., K. Dhar, M. G. Del Core, W. J. Hunter, 3rd, G. I. Hatzoudis, and D. K. Agrawal. Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp. Mol. Pathol. 91(1):346–352, 2011.
    Article PubMed Central CAS PubMed Google Scholar
  22. Hamamdzic, D., and R. L. Wilensky. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J. Diabetes Res. 2013:761415, 2013.
    Article PubMed Central PubMed Google Scholar
  23. Hehrlein, C., M. Zimmermann, J. Pill, J. Metz, W. Kuebler, and E. von Hodenberg. The role of elastic recoil after balloon angioplasty of rabbit arteries and its prevention by stent implantation. Eur. Heart J. 15:277–280, 1994.
    Article CAS PubMed Google Scholar
  24. Heublein, B., R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich. Biocorrosion of Magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656, 2003.
    Article PubMed Central CAS PubMed Google Scholar
  25. Hong, M. K., R. Beyar, R. Kornowski, F. O. Tio, O. Bramwell, and M. B. Leon. Acute and chronic effects of self-expanding nitinol stents in porcine coronary arteries. Coron. Art. Dis. 8:45–48, 1997.
    Article CAS Google Scholar
  26. Iqbal, J., J. Gunn, and P. W. Serruys. Coronary stents: historical development, current status and future directions. Br. Med. Bull. 106:193–211, 2013.
    Article CAS PubMed Google Scholar
  27. Kelly, D., A. Morton, N. Arnold, J. Mecinovic, C. Schofield, H. Lupton, K. Al-Lamee, D. Crossman, J. Gunn, and A. Gershlick. Activation of hypoxia-inducible factor by di-methyl oxalyl glycine (DMOG) increases neovascularisation but not functional vascular supply within ischemic myocardium in a porcine coronary artery occlusion model. J. Clin. Exp. Cardiol. 2:8, 2011.
    Article Google Scholar
  28. Krupski, W. C., A. Bass, A. B. Kelly, U. M. Marzec, S. R. Hanson, and L. A. Harker. Heparin-resistant thrombus formation by endovascular stents in baboons. Interruption by a synthetic antithrombin. Circulation 82:570–577, 1990.
    Article CAS Google Scholar
  29. LaDisa, J. F., LE Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modelling. Biomed. Eng. Online 5:40, 2006.
    Article PubMed Google Scholar
  30. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.
    Article PubMed Google Scholar
  31. Lambert, T. L., V. Dev, E. Rechavia, J. S. Forrester, F. Litvack, and N. L. Eigler. Localized arterial wall drug delivery from a polymer coated removable metallic stent. Kinetics, distribution, and bioactivity of forskolin. Circulation 90:1003–1011, 1994.
    Article CAS PubMed Google Scholar
  32. Lane, J. P., L. E. Perkins, A. J. Sheehy, E. J. Pacheco, M. P. Frie, B. J. Lambert, R. J. Rapoza, and R. Virmani. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. J. Am. Coll. Cardiol. Cardiovasc. Intervent. 7:688–695, 2014.
    Article Google Scholar
  33. Langeveld, B., A. J. Roks, R. A. Tio, A. J. van Boven, J. J. van der Want, R. H. Henning, H. M. van Beusekom, W. J. van der Giessen, F. Zijlstra, and W. H. van Gilst. Rat abdominal aorta stenting: a new and reliable small animal model for in-stent restenosis. J. Vasc. Res. 41:377–386, 2004.
    Article PubMed Google Scholar
  34. Lim, D., S. K. Cho, W. P. Park, A. Kristensson, J. Y. Ko, S. T. Al-Hassani, and H. S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36:1118–1129, 2008.
    Article PubMed Google Scholar
  35. Malik, N., J. Gunn, C. Holt, L. Shepherd, S. Francis, C. Newman, D. Crossman, and D. Cumberland. Intravascular stents: a new technique for tissue processing for histology, immunohistochemistry and transmission electron microscopy. Heart 80:509–516, 1998.
    Article PubMed Central CAS PubMed Google Scholar
  36. Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, J. Gunn, N. Arnold, A. Narracott, D. Evans, and P. Lawford. Hemodynamics and in-stent restenosis: micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39:2615–2626, 2011.
    Article PubMed Google Scholar
  37. Onuma, Y., P. W. Serruys, L. E. Perkins, T. Okamura, N. Gonzalo, H. M. Garcia-Garcia, E. Regar, M. Kamberi, J. C. Powers, R. Rapoza, H. van Beusekom, W. van der Giessen, and R. Virmani. Intracoronary optical coherence tomography and histology at 1 month and 2, 3 and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model. Circulation 122:2288–2300, 2010.
    Article CAS PubMed Google Scholar
  38. Raina, T., J. Iqbal, N. Arnold, H. Moore, B. Aflatoonian, J. Walsh, S. Whitehouse, K. Al-Lamee, S. Francis, and J. Gunn. Coronary stents seeded with human trophoblastic endovascular progenitor cells show accelerated strut coverage without excessive neointimal proliferation in a porcine model. EuroIntervention 10:709–716, 2014.
    Article PubMed Google Scholar
  39. Robinson, K. A., G. S. Roubin, R. J. Siegel, A. J. Black, R. P. Apkarian, and S. B. King. Intra-arterial stenting in the atherosclerotic rabbit. Circulation 78:646–653, 1988.
    Article CAS PubMed Google Scholar
  40. Rodriguez-Menocal, L., Y. Wei, S. M. Pham, M. St-Pierre, S. Li, K. Webster, P. Goldschmidt-Clermont, and R. I. Vazquez-Padron. A novel mouse model of in-stent restenosis. Atherosclerosis 209:359–366, 2010.
    Article PubMed Central CAS PubMed Google Scholar
  41. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.
    Article CAS PubMed Google Scholar
  42. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999.
    Article CAS PubMed Google Scholar
  43. Roubin, G. S., K. A. Robinson, S. B. King, C. Gianturco, A. J. Black, J. E. Brown, R. J. Siegel, and J. S. Douglas. Early and late results of intracoronary arterial stenting after coronary angioplasty in dogs. Circulation 76:891–897, 1987.
    Article CAS PubMed Google Scholar
  44. Schatz, R. A., J. C. Palmaz, F. O. Tio, F. Garcia, O. Garcia, and S. R. Reuter. Balloon-expandable intracoronary stents in the adult dog. Circulation 76:450–457, 1987.
    Article CAS PubMed Google Scholar
  45. Schulz, C., R. A. Herrmann, C. Beilharz, J. Pasquantonio, and E. Alt. Coronary stent symmetry and vascular injury determine experimental restenosis. Heart 83:462–467, 2000.
    Article PubMed Central CAS PubMed Google Scholar
  46. Schwartz, R. S., E. Edelman, R. Virmani, A. Carter, J. F. Granada, G. L. Kaluza, N. A. F. Chronos, K. A. Robinson, R. Waksman, J. Weinberger, G. J. Wilson, and R. L. Wilensky. Drug eluting stents in preclinical studies. Circ. Cardiovasc. Intervent. 1:143–153, 2008.
    Article Google Scholar
  47. Schwartz, R. S., K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J. Am. Coll. Cardiol. 19:267–274, 1992.
    Article CAS PubMed Google Scholar
  48. Sigwart, U., J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316:701–706, 1987.
    Article CAS PubMed Google Scholar
  49. Sousa, J. E., M. A. Costa, A. C. Abizaid, A. S. Abizaid, F. Feres, I. M. Pinto, A. C. Seixas, R. Staico, L. A. Mattos, A. G. Sousa, R. Falotico, J. Jaeger, J. J. Popma, and P. W. Serruys. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries. Circulation 103:192–195, 2001.
    Article CAS PubMed Google Scholar
  50. Suzuki, T., G. Kopia, S. Hayashi, L. R. Bailey, G. Llanos, R. Wilensky, B. D. Klugherz, G. Papandreou, P. Narayan, M. B. Leon, A. C. Yeung, F. Tio, P. S. Tsao, R. Falotico, and A. J. Carter. Stent-based sirolimus therapy reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193, 2001.
    Article CAS PubMed Google Scholar
  51. Tearney, G. J., I. K. Jang, D. H. Kang, H. T. Aretz, S. L. Houser, T. J. Brady, K. Schlendorf, M. Shishkov, and B. E. Bouma. Porcine coronary imaging in vivo by optical coherence tomography. Acta Cardiol. 55:233–237, 2000.
    Article CAS PubMed Google Scholar
  52. Thorpe, P. E., W. J. Hunter, 3rd, X. X. Zhan, P. S. Dovgan, and D. K. Agrawal. A noninjury, diet-induced swine model of atherosclerosis for cardiovascular-interventional research. Angiology 47(9):849–857, 1996.
    Article CAS PubMed Google Scholar
  53. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011.
    Article PubMed Central PubMed Google Scholar
  54. Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart J. 123:21–28, 1992.
    Article CAS PubMed Google Scholar
  55. US Department of Health and Human Services Food and Drug Administration. Guidance for Industry: Coronary Drug-Eluting Stents - Nonclinical and Clinical Studies. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072193.pdf. 2008.
  56. Van der Giessen, W. J., P. W. Serruys, L. J. van Woerkens, K. J. Beatt, W. J. Visser, J. F. Jongkind, R. H. van Bremen, E. Ridderhof, H. van Loon, and L. K. Soei. Arterial stenting with self-expandable and balloon-expandable endoprostheses. Int J. Card. Imaging 5:163–171, 1990.
    Article PubMed Google Scholar
  57. Van der Giessen, W. J., C. J. Slager, H. M. van Beusekom, D. S. van Ingen Schenau, R. A. Huijts, J. C. Schuurbiers, W. J. de Klein, P. W. Serruys, and P. D. Verdouw. Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J. Interv. Cardiol. 5:175–185, 1992.
    Article PubMed Google Scholar
  58. Van der Heiden, K., F. J. Gijssen, A. Narracott, S. Hsaio, I. Halliday, J. Gunn, J. J. Wentzel, and P. C. Evans. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013.
    Article PubMed Google Scholar
  59. Vorpahl, M., J. R. Foerst, M. Kjelm, A. V. Kaplan, R. Virmani, and T. Ball. The complementary role of microCT and histopathology in characterizing the natural history of stented arteries. Expert Rev. Cardiovasc. Ther. 9:939–948, 2011.
    Article PubMed Google Scholar
  60. Wentzel, J. J., F. J. Gijssen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodelling and neointimal formation. J. Biomech. 36:681–688, 2003.
    Article PubMed Google Scholar
  61. Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000.
    Article CAS PubMed Google Scholar
  62. Yoon, H. J., H. Y. Song, J. H. Kim, K. S. Hong, Y. J. Kim, H. G. Park, and D. K. Kim. Role of IN-1233 in the prevention of neointimal hyperplasia after stent placement in a rat artery model. J. Vasc. Interv. Radiol. 22:1321–1328, 2011.
    Article PubMed Google Scholar
  63. Zarins, C. K., and C. A. Taylor. Endovascular device design in the future: transformation from trial and error to computational design. J. Endovasc. Ther. 16(1):I12–I21, 2009.
    PubMed Google Scholar

Download references