Role of Animal Models in Coronary Stenting (original) (raw)
References
Ali, Z. A., N. J. Alp, H. Lupton, N. Arnold, T. Bannister, Y. Hu, S. Mussa, M. Wheatcroft, D. Greaves, J. Gunn, and K. Channon. Increased in-stent stenosis in ApoE knockout mice: insights from a novel mouse model of balloon angioplasty and stenting. Arterioscler. Thromb. Vasc. Biol. 27:833–840, 2007. ArticleCASPubMed Google Scholar
Balakrishnan, B., A. R. Tsafriri, P. Seifert, A. Groothuis, C. Rogers, and E. R. Edelman. Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents. Circulation 111:2958–2965, 2005. ArticlePubMed Google Scholar
Bauters, C., T. Meurice, M. Hamon, E. McFadden, J. M. Lablanche, and M. E. Bertrand. Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc. Res. 31:835–846, 1996. ArticleCASPubMed Google Scholar
Caiazzo, A., D. Evans, J.-L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorf, B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, and A. Hoekstra. A complex automata approach for in-stent restenosis: two-dimensional multiscale modeling and simulations. J Comput. Sci. 2:9–17, 2011. Article Google Scholar
Caro, C. G., A. Seneviratne, K. B. Heraty, C. Monaco, M. G. Burke, R. Krams, C. C. Chang, P. Gilson, and G. Coppola. Intimal hyperplasia following implantation of helical centreline and straight centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow. J. R. Soc. Interface 10(89):20130578, 2013. ArticlePubMed CentralPubMed Google Scholar
Carrozza, J. P., S. E. Hosley, D. J. Cohen, and D. S. Baim. In vivo assessment of stent expansion and recoil in normal porcine coronary arteries: differential outcome by stent design. Circulation 100:756–760, 1999. ArticlePubMed Google Scholar
Carter, A. J., M. Aggarwal, G. A. Kopia, F. Tio, T. S. Tsao, R. Kolata, A. C. Yeung, G. Llanos, J. Dooley, and R. Falotico. Long term effects of polymer-based, slow release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc. Res. 63:617–624, 2004. ArticleCASPubMed Google Scholar
Carter, A. J., J. R. Laird, A. Farb, W. Kufs, D. C. Wortham, and R. Virmani. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J. Am. Coll. Cardiol. 24:1398–1405, 1994. ArticleCASPubMed Google Scholar
Carter, A. J., J. R. Laird, W. M. Kufs, L. Bailey, T. G. Hoopes, T. Reeves, A. Farb, and R. Virmani. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model. J. Am. Coll. Cardiol. 27:1270–1277, 1996. ArticleCASPubMed Google Scholar
Carter, A. J., D. Scott, D. Rahdert, L. Bailey, J. De Vries, K. Ayerdi, T. Turnlund, R. Jones, R. Virmani, and T. A. Fischell. Stent design favourably influences the vascular response in normal porcine coronary arteries. J. Invasive Cardiol. 11:127–134, 1999. CASPubMed Google Scholar
Chamberlain, J., M. Wheatcroft, N. Arnold, H. Lupton, D. C. Crossman, J. Gunn, and S. Francis. A novel mouse model of in situ stenting. Cardiovasc. Res. 85:38–44, 2010. ArticlePubMed CentralCASPubMed Google Scholar
Curtin, A. E., and L. Zhou. An agent-based model of the response to angioplasty and bare metal stent deployment in an atherosclerotic blood vessel. PLoS One 9:e9441, 2014. Article Google Scholar
De Meyer, S. F., S. Staelens, P. N. Badenhorst, H. Pieters, S. Lamprecht, J. Roodt, S. Janssens, M. Meiring, K. Vanhoorelbeke, A. Bruwer, S. Brown, and H. Deckmyn. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor-collagen interaction in baboons. Thromb. Haemost. 98:1343–1349, 2007. PubMed Google Scholar
Dean, C. J., A. C. Morton, N. D. Arnold, D. R. Hose, D. C. Crossman, and J. Gunn. Relative importance of the components of stent geometry to stretch-induced in-stent neointima formation. Heart 91:1603–1604, 2005. ArticlePubMed CentralCASPubMed Google Scholar
Finn, A. V., H. K. Gold, A. Tang, D. K. Weber, T. N. Wight, A. Clermont, R. Virmani, and F. D. Kolodgie. A novel rat model of carotid artery stenting for the understanding of restenosis in metabolic diseases. J. Vasc. Res. 39:414–425, 2002. ArticleCASPubMed Google Scholar
Gallo, R., A. Padurean, T. Jayaraman, S. Marx, M. Roque, S. Adelman, J. Chesebro, J. Fallon, V. Fuster, A. Marks, and J. J. Badimon. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 99:2164–2170, 1999. ArticleCASPubMed Google Scholar
Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, and C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101:812–818, 2000. ArticleCASPubMed Google Scholar
Grinstead, W. C., G. P. Rodgers, W. Mazur, B. A. French, D. Cromeens, C. Van Pelt, S. M. West, and A. E. Raizner. Comparison of three porcine restenosis models: the relative importance of hypercholesterolemia, endothelial abrasion, and stenting. Coron. Art. Dis. 5:425–434, 1994. ArticleCAS Google Scholar
Grüntzig, A., H. H. Riedhammer, M. Turina, and W. Rutishauser. A new method for the percutaneous dilation of coronary stenoses in animal experiment. Verh. Dtsch. Ges. Kreislaufforsch. 42:282–285, 1976. ArticlePubMed Google Scholar
Gunn, J., K. H. Chan, N. Arnold, L. Shepherd, D. Cumberland, and D. Crossman. Coronary artery stretch vs. deep injury in the development of in-stent neointima. Heart 88:401–405, 2002. ArticlePubMed CentralCASPubMed Google Scholar
Gupta, G. K., K. Dhar, M. G. Del Core, W. J. Hunter, 3rd, G. I. Hatzoudis, and D. K. Agrawal. Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp. Mol. Pathol. 91(1):346–352, 2011. ArticlePubMed CentralCASPubMed Google Scholar
Hamamdzic, D., and R. L. Wilensky. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J. Diabetes Res. 2013:761415, 2013. ArticlePubMed CentralPubMed Google Scholar
Hehrlein, C., M. Zimmermann, J. Pill, J. Metz, W. Kuebler, and E. von Hodenberg. The role of elastic recoil after balloon angioplasty of rabbit arteries and its prevention by stent implantation. Eur. Heart J. 15:277–280, 1994. ArticleCASPubMed Google Scholar
Heublein, B., R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich. Biocorrosion of Magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656, 2003. ArticlePubMed CentralCASPubMed Google Scholar
Hong, M. K., R. Beyar, R. Kornowski, F. O. Tio, O. Bramwell, and M. B. Leon. Acute and chronic effects of self-expanding nitinol stents in porcine coronary arteries. Coron. Art. Dis. 8:45–48, 1997. ArticleCAS Google Scholar
Iqbal, J., J. Gunn, and P. W. Serruys. Coronary stents: historical development, current status and future directions. Br. Med. Bull. 106:193–211, 2013. ArticleCASPubMed Google Scholar
Kelly, D., A. Morton, N. Arnold, J. Mecinovic, C. Schofield, H. Lupton, K. Al-Lamee, D. Crossman, J. Gunn, and A. Gershlick. Activation of hypoxia-inducible factor by di-methyl oxalyl glycine (DMOG) increases neovascularisation but not functional vascular supply within ischemic myocardium in a porcine coronary artery occlusion model. J. Clin. Exp. Cardiol. 2:8, 2011. Article Google Scholar
Krupski, W. C., A. Bass, A. B. Kelly, U. M. Marzec, S. R. Hanson, and L. A. Harker. Heparin-resistant thrombus formation by endovascular stents in baboons. Interruption by a synthetic antithrombin. Circulation 82:570–577, 1990. ArticleCAS Google Scholar
LaDisa, J. F., LE Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modelling. Biomed. Eng. Online 5:40, 2006. ArticlePubMed Google Scholar
LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004. ArticlePubMed Google Scholar
Lambert, T. L., V. Dev, E. Rechavia, J. S. Forrester, F. Litvack, and N. L. Eigler. Localized arterial wall drug delivery from a polymer coated removable metallic stent. Kinetics, distribution, and bioactivity of forskolin. Circulation 90:1003–1011, 1994. ArticleCASPubMed Google Scholar
Lane, J. P., L. E. Perkins, A. J. Sheehy, E. J. Pacheco, M. P. Frie, B. J. Lambert, R. J. Rapoza, and R. Virmani. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. J. Am. Coll. Cardiol. Cardiovasc. Intervent. 7:688–695, 2014. Article Google Scholar
Langeveld, B., A. J. Roks, R. A. Tio, A. J. van Boven, J. J. van der Want, R. H. Henning, H. M. van Beusekom, W. J. van der Giessen, F. Zijlstra, and W. H. van Gilst. Rat abdominal aorta stenting: a new and reliable small animal model for in-stent restenosis. J. Vasc. Res. 41:377–386, 2004. ArticlePubMed Google Scholar
Lim, D., S. K. Cho, W. P. Park, A. Kristensson, J. Y. Ko, S. T. Al-Hassani, and H. S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36:1118–1129, 2008. ArticlePubMed Google Scholar
Malik, N., J. Gunn, C. Holt, L. Shepherd, S. Francis, C. Newman, D. Crossman, and D. Cumberland. Intravascular stents: a new technique for tissue processing for histology, immunohistochemistry and transmission electron microscopy. Heart 80:509–516, 1998. ArticlePubMed CentralCASPubMed Google Scholar
Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, J. Gunn, N. Arnold, A. Narracott, D. Evans, and P. Lawford. Hemodynamics and in-stent restenosis: micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39:2615–2626, 2011. ArticlePubMed Google Scholar
Onuma, Y., P. W. Serruys, L. E. Perkins, T. Okamura, N. Gonzalo, H. M. Garcia-Garcia, E. Regar, M. Kamberi, J. C. Powers, R. Rapoza, H. van Beusekom, W. van der Giessen, and R. Virmani. Intracoronary optical coherence tomography and histology at 1 month and 2, 3 and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model. Circulation 122:2288–2300, 2010. ArticleCASPubMed Google Scholar
Raina, T., J. Iqbal, N. Arnold, H. Moore, B. Aflatoonian, J. Walsh, S. Whitehouse, K. Al-Lamee, S. Francis, and J. Gunn. Coronary stents seeded with human trophoblastic endovascular progenitor cells show accelerated strut coverage without excessive neointimal proliferation in a porcine model. EuroIntervention 10:709–716, 2014. ArticlePubMed Google Scholar
Robinson, K. A., G. S. Roubin, R. J. Siegel, A. J. Black, R. P. Apkarian, and S. B. King. Intra-arterial stenting in the atherosclerotic rabbit. Circulation 78:646–653, 1988. ArticleCASPubMed Google Scholar
Rodriguez-Menocal, L., Y. Wei, S. M. Pham, M. St-Pierre, S. Li, K. Webster, P. Goldschmidt-Clermont, and R. I. Vazquez-Padron. A novel mouse model of in-stent restenosis. Atherosclerosis 209:359–366, 2010. ArticlePubMed CentralCASPubMed Google Scholar
Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995. ArticleCASPubMed Google Scholar
Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999. ArticleCASPubMed Google Scholar
Roubin, G. S., K. A. Robinson, S. B. King, C. Gianturco, A. J. Black, J. E. Brown, R. J. Siegel, and J. S. Douglas. Early and late results of intracoronary arterial stenting after coronary angioplasty in dogs. Circulation 76:891–897, 1987. ArticleCASPubMed Google Scholar
Schatz, R. A., J. C. Palmaz, F. O. Tio, F. Garcia, O. Garcia, and S. R. Reuter. Balloon-expandable intracoronary stents in the adult dog. Circulation 76:450–457, 1987. ArticleCASPubMed Google Scholar
Schulz, C., R. A. Herrmann, C. Beilharz, J. Pasquantonio, and E. Alt. Coronary stent symmetry and vascular injury determine experimental restenosis. Heart 83:462–467, 2000. ArticlePubMed CentralCASPubMed Google Scholar
Schwartz, R. S., E. Edelman, R. Virmani, A. Carter, J. F. Granada, G. L. Kaluza, N. A. F. Chronos, K. A. Robinson, R. Waksman, J. Weinberger, G. J. Wilson, and R. L. Wilensky. Drug eluting stents in preclinical studies. Circ. Cardiovasc. Intervent. 1:143–153, 2008. Article Google Scholar
Schwartz, R. S., K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J. Am. Coll. Cardiol. 19:267–274, 1992. ArticleCASPubMed Google Scholar
Sigwart, U., J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316:701–706, 1987. ArticleCASPubMed Google Scholar
Sousa, J. E., M. A. Costa, A. C. Abizaid, A. S. Abizaid, F. Feres, I. M. Pinto, A. C. Seixas, R. Staico, L. A. Mattos, A. G. Sousa, R. Falotico, J. Jaeger, J. J. Popma, and P. W. Serruys. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries. Circulation 103:192–195, 2001. ArticleCASPubMed Google Scholar
Suzuki, T., G. Kopia, S. Hayashi, L. R. Bailey, G. Llanos, R. Wilensky, B. D. Klugherz, G. Papandreou, P. Narayan, M. B. Leon, A. C. Yeung, F. Tio, P. S. Tsao, R. Falotico, and A. J. Carter. Stent-based sirolimus therapy reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193, 2001. ArticleCASPubMed Google Scholar
Tearney, G. J., I. K. Jang, D. H. Kang, H. T. Aretz, S. L. Houser, T. J. Brady, K. Schlendorf, M. Shishkov, and B. E. Bouma. Porcine coronary imaging in vivo by optical coherence tomography. Acta Cardiol. 55:233–237, 2000. ArticleCASPubMed Google Scholar
Thorpe, P. E., W. J. Hunter, 3rd, X. X. Zhan, P. S. Dovgan, and D. K. Agrawal. A noninjury, diet-induced swine model of atherosclerosis for cardiovascular-interventional research. Angiology 47(9):849–857, 1996. ArticleCASPubMed Google Scholar
Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011. ArticlePubMed CentralPubMed Google Scholar
Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart J. 123:21–28, 1992. ArticleCASPubMed Google Scholar
Van der Giessen, W. J., P. W. Serruys, L. J. van Woerkens, K. J. Beatt, W. J. Visser, J. F. Jongkind, R. H. van Bremen, E. Ridderhof, H. van Loon, and L. K. Soei. Arterial stenting with self-expandable and balloon-expandable endoprostheses. Int J. Card. Imaging 5:163–171, 1990. ArticlePubMed Google Scholar
Van der Giessen, W. J., C. J. Slager, H. M. van Beusekom, D. S. van Ingen Schenau, R. A. Huijts, J. C. Schuurbiers, W. J. de Klein, P. W. Serruys, and P. D. Verdouw. Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J. Interv. Cardiol. 5:175–185, 1992. ArticlePubMed Google Scholar
Van der Heiden, K., F. J. Gijssen, A. Narracott, S. Hsaio, I. Halliday, J. Gunn, J. J. Wentzel, and P. C. Evans. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013. ArticlePubMed Google Scholar
Vorpahl, M., J. R. Foerst, M. Kjelm, A. V. Kaplan, R. Virmani, and T. Ball. The complementary role of microCT and histopathology in characterizing the natural history of stented arteries. Expert Rev. Cardiovasc. Ther. 9:939–948, 2011. ArticlePubMed Google Scholar
Wentzel, J. J., F. J. Gijssen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodelling and neointimal formation. J. Biomech. 36:681–688, 2003. ArticlePubMed Google Scholar
Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000. ArticleCASPubMed Google Scholar
Yoon, H. J., H. Y. Song, J. H. Kim, K. S. Hong, Y. J. Kim, H. G. Park, and D. K. Kim. Role of IN-1233 in the prevention of neointimal hyperplasia after stent placement in a rat artery model. J. Vasc. Interv. Radiol. 22:1321–1328, 2011. ArticlePubMed Google Scholar
Zarins, C. K., and C. A. Taylor. Endovascular device design in the future: transformation from trial and error to computational design. J. Endovasc. Ther. 16(1):I12–I21, 2009. PubMed Google Scholar