Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine (original) (raw)
References
Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis, 2nd Ed. Vol. 2. Pp. 673–677. Academic Press, New York — London 1974. Chapter Google Scholar
Ali, Q., Ashraf, M., Athar, H.R.: Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. — Pak. J. Bot. 39: 1133–1144, 2007. Google Scholar
Alscher, R.G., Hess, J.L.: Antioxidants in Higher Plants. — CRC Press, Boca Raton 1993. Google Scholar
Anjum, S.A., Farooq, M., Wang, L.C., Xue, L.L., Wang, S.G., Wang, L., Zhang, S., Chen, M.: Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. — Plant Soil Environ. 57: 326–331, 2011. CAS Google Scholar
Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004. ArticleCASPubMed Google Scholar
Beadle, C.L.: Growth analysis. — In: Hall, D.O., Bolhár Nordenkampf, H.R., Leegood, R.C. (ed.): Photosysthesis and Production in a Changing Environment: a Field and Laboratory Manual. Pp. 36–46. Chapman & Hall, London 1993. Google Scholar
Bohnert, H.J., Jensen, R.G.: Strategies for engineering water stress tolerance in plants. — Trends Biotechnol. 14: 89–97, 1996. ArticleCAS Google Scholar
Bradford, M.M.: A rapid and sensitive method for the qualitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976. ArticleCASPubMed Google Scholar
Cha-Um, S., Kirdmanee, C.: Effect of glycinebetaine on proline, water use and photosynthetic efficiencies and growth of rice seedlings under salt stress. — Turk. J. Agr. Forest. 34: 517–527, 2010. CAS Google Scholar
Cha-Um, S., Samphumphuang, T., Kirdmanee, C.: Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. — Aust. J. Crop Sci. 7: 213–218, 2013. CAS Google Scholar
Chen, T.H.H., Murata, N.: Glycinebetaine: an effective protectant against abiotic stress in plants. — Trends Plant Sci. 13: 499–505, 2008. ArticleCASPubMed Google Scholar
Dat, J.F., Foyer, C.H., Scott, I.M.: Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. — Plant Physiol. 118: 1455–1461, 1998. ArticleCASPubMed CentralPubMed Google Scholar
Deivanai, S., Xavier, R., Vinod, V., Timalata, K., Lim, O.F.: Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. — J. Physiol. Biochem. 7: 157–174, 2011. Google Scholar
Demiral, T., Türkan, I.: Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. — Environ. exp. Bot. 56: 72–79, 2006. ArticleCAS Google Scholar
Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 126: 93–101, 1981. Article Google Scholar
Ehsanpour, A.A., Fatahian, N.: Effects of salt and proline on Medicago sativa callus. — Plant Cell Tissue Organ Cult. 73: 53–56, 2003. ArticleCAS Google Scholar
Farooq, M., Basra, S.M.A., Wahid, A., Cheema, Z.A., Cheema, M.A., Khaliq, A.: Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). — J. Agron. Crop Sci. 194: 325–333, 2008. ArticleCAS Google Scholar
Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. — Annu. Rev. Plant Physiol. 28: 89–121, 1977. ArticleCAS Google Scholar
Greenway, H., Munns, R.: Mechanisms of salt tolerance in nonhalophytes. — Annu. Rev. Plant Physiol. 31: 149–190, 1980. ArticleCAS Google Scholar
Hasanuzzaman, M., Hossain, M.A., Fujita, M.: Seleniuminduced upregulation of the antioxidant defense and methylglyoxal detoxification system reduces salinityinduced damage in rapeseed seedlings. — Biol. Trace Element Res. 143: 1704–1721, 2011. ArticleCAS Google Scholar
Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000. ArticleCASPubMed Google Scholar
Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments. — Plant Signal. Behav. 7: 1456–1466, 2012. ArticleCASPubMed CentralPubMed Google Scholar
Hernandez, J.A., Alamansa, M.S.: Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. — Physiol. Plant. 115: 251–257, 2002. ArticleCASPubMed Google Scholar
Hoque, M.A., Banu, M.N., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. — J. Plant Physiol. 164: 1457–1468, 2007. ArticleCASPubMed Google Scholar
Hoque, M.A., Okuma, E., Banu, N.A., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. — J. Plant Physiol. 164: 553–561, 2006. ArticlePubMed Google Scholar
Hossain, M.A., Hasanuzzaman, M., Fujita, M.: Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. — Front Agr. China 5: 1–14, 2011. Article Google Scholar
Jana, S., Choudhuri, M.A.: Glycolate metabolism of three submerged aquatic angiosperms during aging. — Aquat. Bot. 12: 345–354, 1981. Article Google Scholar
Kong-ngern, K., Bunnag, S., Theerakulpisut, P.: Proline, hydrogen peroxide, membrane stability and antioxidant enzyme activity as potential indicators for salt tolerance in rice (Oryza sativa L.) — Int. J. Bot. 8: 54–65, 2012. Article Google Scholar
Kumar, V., Sharma, R.D.: Effect of exogenous proline on growth and ion content in NaCl stressed and nonstressed cells of mungbean, Vigna radiata var. radiata. — Indian J. exp. Biol. 27: 813–815, 1989. CAS Google Scholar
Lee, H.D., Kim, Y.S., Lee, C.B.: The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). — J. Plant Physiol. 158: 735–745, 2001. Article Google Scholar
Li, L., Qu, R., De Koch, A., Fauquet, C.M., Beachy, R.N.: An improved rice transformation method using the biolistic method. — Plant Cell Rep. 12: 250–255, 1993. ArticlePubMed Google Scholar
Limpinuntana, V.: Physiological aspects of adaptation of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) to low oxygen concentrations in the root environment. — Ph.D. Thesis, Chulalongkorn University, Bangkok 1978. Google Scholar
Ma, Q.Q., Wang, W., Li, Y.H., Li, D.Q., Zou, Q.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum L.) by foliar-applied glycinebetaine. — J. Plant Physiol. 163: 165–175, 2006. ArticleCASPubMed Google Scholar
Makela, P., Kontturib, M., Pehua, E., Somersaloa, S.. Photosynthetic response to drought and salt stressed tomato and turnip rape plants to foliar applied glycinebetaine. — Physiol. Plant. 105: 45–50, 2002. Article Google Scholar
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010. ArticleCASPubMed Google Scholar
Mittova, V., Tal, M., Volokita, M., Guy, M.: Up-regulation of the leaf mitochondria1 and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. — Plant Cell Environ. 26: 845–856, 2003. ArticleCASPubMed Google Scholar
Mohammed, A.R., Tarpley, L. Characterization of rice (Oryza sativa L.) physiological responses to α-tocopherol, glycine betaine or salicylic acid application. — J. agr. Sci. 3: 3–13, 2011. Google Scholar
Nagano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981. Google Scholar
Rahman, S.M., Miyake, H., Takeoka, Y.: Effects of exogenous glycinebetaine on growth and ultrastructure of salt stressed rice seedlings (Oryza sativa L.) — Plant Product. Sci. 5: 33–44, 2002. ArticleCAS Google Scholar
Raza, S.H., Athar, H.R., Ashraf, M.: Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. — Pak. J. Bot. 38: 341–351, 2006. Google Scholar
Reddy, M.P., Vora, A.B.: Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. — Photosynthetica 20: 50–55, 1986. CAS Google Scholar
Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357–384. 1993. ArticleCAS Google Scholar
Roy, D., Basu, N., Bhunia, A., Banerjee, S.K.: Counteration of exogenous L-proline with NaCl in salt-sensitive cultivar of rice. — Biol. Plant 35: 69–72, 1993. ArticleCAS Google Scholar
Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C.: Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. — Biol. Plant 49: 85–91, 2005. ArticleCAS Google Scholar
Sekmen, A.H., Türkan, I., Takio, S.: Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. — Physiol. Plant 131: 399–411, 2007. ArticleCASPubMed Google Scholar
Serraj, R., Sinclair, T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? — Plant Cell Environ. 25: 333–341, 2002. ArticlePubMed Google Scholar
Sharma, P.K., Hall, D.O.: Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. — J. Plant Physiol. 138: 614–619, 1991. ArticleCAS Google Scholar
Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989. ArticleCAS Google Scholar
Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). — Anal. Biochem. 175: 408–413, 1988. ArticleCASPubMed Google Scholar
Sobahan, M.A., Akter, N., Ohno, M., Okuma, E., Hirai, Y., Mori, I.C., Nakamura, Y, Murata, Y.: Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. — Biosci. Biotechnol. Biochem. 76: 1568–1570, 2012. ArticleCASPubMed Google Scholar
Sobahan, M.A, Arias, C.R., Okuma, E., Shimoishi, Y., Nakamura, Y., Hirai, Y., Mori, I.C., Murata, Y.: Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. — Biosci. Biotechnol. Biochem. 73: 2037–2042, 2009. ArticleCASPubMed Google Scholar
Wani, S.H., Singh, N.B., Haribhushan, A., Mir, J.I.: Compatible solute engineering in plants for abiotic stress tolerance role of glycine betaine. — Curr. Genomics 14: 157–165, 2013. ArticleCASPubMed CentralPubMed Google Scholar
Wanchananan, P., Kirdmanee, C., Vutlyano, C.: Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt-tolerance in aromatic rice (Oryza sativa L.). — Sci. Asia 29: 333–339, 2003. Article Google Scholar
Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evolution of osmolyte systems. — Science 217: 1214–1222, 1982. ArticleCASPubMed Google Scholar