Tumor cell invasion and survival in head and neck cancer (original) (raw)
References
Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D: Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res 56: 2488–2492, 1996 PubMedCAS Google Scholar
Califano J, Westra WH, Meininger G, Corio R, Koch WM, Sidransky D: Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin Cancer Res 6: 347–352, 2000 PubMedCAS Google Scholar
Ziober BL, Silverman SS, Jr. Kramer RH: Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit Rev Oral Biol Med 12: 499–510, 2001 ArticlePubMedCAS Google Scholar
Ziober BL, Kramer RH: Chapter 6: Adhesion receptors in oral cancer invasion. In: Ensley JF, Gutkind JS (eds) Head and Neck Cancer. Elsevier Science, 2003, pp 65–79
Colognato H, Yurchenco PD: Form and function: The laminin family of heterotrimers. Dev Dyn 218: 213–234, 2000 ArticleCASPubMed Google Scholar
Nguyen BP, Ryan MC, Gil SG, Carter WG: Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr Opin Cell Biol 12: 554–562, 2000 ArticleCASPubMed Google Scholar
Rousselle P, Lunstrum GP, Keene DR, Burgeson RE: Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 114: 567–576, 1991 ArticlePubMedCAS Google Scholar
Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvason K: Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55: 4132–4139, 1995 CASPubMed Google Scholar
Zhang K, Kramer RH: Laminin 5 deposition promotes keratinocyte motility. Exp Cell Res 227: 309–322, 1996 PubMedCAS Google Scholar
Kainulainen T, Autio-Harmainen H, Oikarinen A, Salo S, Tryggvason K, Salo T: Altered distribution and synthesis of laminin-5 (kalinin) in oral lichen planus, epithelial dysplasias and squamous cell carcinomas. Br J Dermatol 136: 331–336, 1997 ArticlePubMedCAS Google Scholar
Ono Y, Nakanishi Y, Ino Y, Niki T, Yamada T, Yoshimura K, Saikawa M, Nakajima T, Hirohashi S: Clinocopathologic significance of laminin-5 gamma2 chain expression in squamous cell carcinoma of the tongue: Immunohistochemical analysis of 67 lesions. Cancer 85: 2315–2321, 1999 PubMedCAS Google Scholar
Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, Ondrey FG, Adams GL, Gaffney PM: Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res 64: 55–63, 2004 PubMedCAS Google Scholar
Patarroyo M, Tryggvason K, Virtanen I: Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12: 197–207, 2002 ArticleCASPubMed Google Scholar
Patel V, Aldridge K, Ensley JF, Odell E, Boyd A, Jones J, Gutkind JS, Yeudall WA: Laminin-gamma2 overexpression in head-and-neck squamous cell carcinoma. Int J Cancer 99: 583–588, 2002 PubMedCAS Google Scholar
Niki T, Kohno T, Iba S, Moriya Y, Takahashi Y, Saito M, Maeshima A, Yamada T, Matsuno Y, Fukayama M, Yokota J, Hirohashi S: Frequent co-localization of Cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas. Am J Pathol 160: 1129–1141, 2002 PubMedCAS Google Scholar
Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D: Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 81: 1071–1079, 1999 ArticleCASPubMed Google Scholar
Aumailley M, El Khal A, Knoss N, Tunggal L: Laminin 5 processing and its integration into the ECM. Matrix Biol 22: 49–54, 2003 PubMedCAS Google Scholar
Goldfinger LE, Stack MS, Jones JC: Processing of laminin-5 and its functional consequences: Role of plasmin and tissue-type plasminogen activator. J Cell Biol 141: 255–265, 1998 PubMedCAS Google Scholar
Goldfinger LE, Hopkinson SB, deHart GW, Collawn S, Couchman JR, Jones JC: The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci 112(Pt 16): 2615–2629, 1999 PubMedCAS Google Scholar
Shang M, Koshikawa N, Schenk S, Quaranta V: The LG3 module of laminin-5 harbors a binding site for integrin alpha3beta1 that promotes cell adhesion, spreading, and migration. J Biol Chem 276: 33045–33053, 2001 PubMedCAS Google Scholar
Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V: Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277: 225–228, 1997 ArticleCASPubMed Google Scholar
Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V: Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148: 615–624, 2000 ArticleCASPubMed Google Scholar
Ondruschka C, Buhtz P, Motsch C, Freigang B, Schneider-Stock R, Roessner A, Boltze C: Prognostic value of MMP-2, -9 and TIMP-1,-2 immunoreactive protein at the invasive front in advanced head and neck squamous cell carcinomas. Pathol Res Pract 198: 509–515, 2002 PubMed Google Scholar
Yoshizaki T, Sato H, Maruyama Y, Murono S, Furukawa M, Park CS, Seiki M: Increased expression of membrane type 1-matrix metalloproteinase in head and neck carcinoma. Cancer 79: 139–144, 1997 PubMedCAS Google Scholar
Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A: Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res 19: 2929–2938, 1999 PubMedCAS Google Scholar
Amano S, Scott IC, Takahara K, Koch M, Champliaud MF, Gerecke DR, Keene DR, Hudson DL, Nishiyama T, Lee S, Greenspan DS, Burgeson RE: Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem 275: 22728–22735, 2000 PubMedCAS Google Scholar
Veitch DP, Nokelainen P, McGowan KA, Nguyen TT, Nguyen NE, Stephenson R, Pappano WN, Keene DR, Spong SM, Greenspan DS, Findell PR, Marinkovich MP: Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem 278: 15661–15668, 2003 PubMedCAS Google Scholar
Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC: Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109(Pt 10): 2509–2520, 1996 PubMedCAS Google Scholar
Mizushima H, Takamura H, Miyagi Y, Kikkawa Y, Yamanaka N, Yasumitsu H, Misugi K, Miyazaki K: Identification of integrin-dependent and -independent cell adhesion domains in COOH-terminal globular region of laminin-5 alpha 3 chain. Cell Growth Differ 8: 979–987, 1997 PubMedCAS Google Scholar
DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO: alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137: 729–742, 1997 PubMedCAS Google Scholar
Carter WG, Ryan MC, Gahr PJ: Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell 65: 599–610, 1991 PubMedCAS Google Scholar
Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, Jones JC: A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell 10: 259–270, 1999 PubMedCAS Google Scholar
Zhang K, Kim JP, Woodley DT, Waleh NS, Chen YQ, Kramer RH: Restricted expression and function of laminin 1-binding integrins in normal and malignant oral mucosal keratinocytes. Cell Adhes. Commun 4: 159–174, 1996 PubMedCAS Google Scholar
Jones J, Sugiyama M, Giancotti F, Speight PM, Watt FM: Transfection of beta 4 integrin subunit into a neoplastic keratinocyte line fails to restore terminal differentiation capacity or influence proliferation. Cell Adhes Commun 4: 307–316, 1996 PubMedCAS Google Scholar
Mercurio AM, Rabinovitz I, Shaw LM: The alpha6beta4 integrin and epithelial cell migration. Curr Opin Cell Biol 13: 541–545, 2001 PubMedCAS Google Scholar
Rabinovitz I, Mercurio AM: The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139: 1873–1884, 1997 PubMedCAS Google Scholar
Lauffenburger DA, Horwitz AF: Cell migration: A physically integrated molecular process. Cell 84: 359–369, 1996 ArticleCASPubMed Google Scholar
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: integrating signals from front to back. Science 302: 1704–1709, 2003 ArticleCASPubMed Google Scholar
Raftopoulou M, Hall A: Cell migration: Rho GTPases lead the way. Dev Biol 265: 23–32, 2004 PubMedCAS Google Scholar
Kawano K, Kantak S, Murai M, Yao C-C, Kramer R: Integrin alpha 3 beta 1 engagement disrupts intercellular adhesion. Exp. Cell Res. 262: 180–196, 2001 PubMedCAS Google Scholar
Zhou H, Kramer RH: Rho small GTPases in cell motility in squamous cell carcinoma Mol Biol Cell 14: 469a, 2003. Google Scholar
Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG: Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278: 1464–1466, 1997 PubMedCAS Google Scholar
Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG: A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375: 338–340, 1995 PubMedCAS Google Scholar
Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG: Invasion of T-lymphoma cells: Cooperation between Rho family GTPases and lysophospholipid receptor signaling. Embo J 17: 4066–4074, 1998 ArticleCASPubMed Google Scholar
Evers EE, van der Kammen RA, ten Klooster JP, Collard JG: Rho-like GTPases in tumor cell invasion. Methods Enzymol 325: 403–415, 2000 ArticlePubMedCAS Google Scholar
Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG: Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149: 775–782, 2000 PubMedCAS Google Scholar
Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD: Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 111: 1285–1289, 2001 PubMedCAS Google Scholar
van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD: RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60: 5832–5838, 2000 PubMedCAS Google Scholar
Liu A, Du W, Liu JP, Jessell TM, Prendergast GC: RhoB alteration is necessary for apoptotic and antineoplastic responses to farnesyltransferase inhibitors. Mol Cell Biol 20: 6105–6113, 2000 PubMedCAS Google Scholar
Liu AX, Rane N, Liu JP, Prendergast GC: RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol 21: 6906–6912, 2001 Google Scholar
Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG: Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97: 185–189, 2000 PubMedCAS Google Scholar
Malliri A, van der Kammen RA, Clark K, van der Valk M, Michiels F, Collard JG: Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417: 867–871, 2002 PubMedCAS Google Scholar
Wang DZ, Nur EKMS, Tikoo A, Montague W, Maruta H: The GTPase and Rho GAP domains of p190, a tumor suppressor protein that binds the M(r) 120,000 Ras GAP, independently function as anti-Ras tumor suppressors. Cancer Res 57: 2478–2484, 1997 PubMedCAS Google Scholar
Tikoo A, Czekay S, Viars C, White S, Heath JK, Arden K, Maruta H: p190-A, a human tumor suppressor gene, maps to the chromosomal region 19q13.3 that is reportedly deleted in some gliomas. Gene 257: 23–31, 2000 Google Scholar
Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K: Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281: 832–835, 1998 PubMedCAS Google Scholar
Ho YD, Joyal JL, Li Z, Sacks DB: IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 274: 464–470, 1999 PubMedCAS Google Scholar
Swart-Mataraza JM, Li Z, Sacks DB: IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J Biol Chem 277: 24753–24763, 2002 PubMedCAS Google Scholar
Manser E, Lim L: Roles of PAK family kinases. Prog Mol Subcell Biol 22: 115–133, 1999 PubMedCAS Google Scholar
Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R: Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238-36244, 2000 PubMedCAS Google Scholar
McMullan R, Lax S, Robertson VH, Radford DJ, Broad S, Watt FM, Rowles A, Croft DR, Olson MF, Hotchin NA: Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway. Curr Biol 13: 2185–2189, 2003 PubMedCAS Google Scholar
Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H: Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9: 2632–2641, 2003 PubMedCAS Google Scholar
Nakajima M, Hayashi K, Egi Y, Katayama K, Amano Y, Uehata M, Ohtsuki M, Fujii A, Oshita K, Kataoka H, Chiba K, Goto N, Kondo T: Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother Pharmacol 52: 319–324, 2003 PubMedCAS Google Scholar
Nishimura Y, Itoh K, Yoshioka K, Tokuda K, Himeno M: Overexpression of ROCK in human breast cancer cells: Evidence that ROCK activity mediates intracellular membrane traffic of lysosomes. Pathol Oncol Res 9: 83–95, 2003 ArticlePubMedCAS Google Scholar
Sahai E, Marshall CJ: Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719, 2003 PubMedCAS Google Scholar
Gumbiner BM: Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345–357, 1996 PubMedCAS Google Scholar
Takeichi M: Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455, 1991 PubMedCAS Google Scholar
Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303: 1483–1487, 2004 ArticleCASPubMed Google Scholar
Yap AS, Niessen CM, Gumbiner BM: The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 141: 779–789, 1998 Google Scholar
Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A: A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533, 1991 PubMedCAS Google Scholar
Andrews NA, Jones AS, Helliwell TR, Kinsella AR: Expression of the E-cadherin-catenin cell adhesion complex in primary squamous cell carcinomas of the head and neck and their nodal metastases. Br J Cancer 75: 1474–1480, 1997 PubMedCAS Google Scholar
Bowie GL, Caslin AW, Roland NJ, Field JK, Jones AS, Kinsella AR: Expression of the cell-cell adhesion molecule E-cadherin in squamous cell carcinoma of the head and neck. Clin Otolaryngol 18: 196–201, 1993 ArticlePubMedCAS Google Scholar
Lango MN, Shin DM, Grandis JR: Targeting growth factor receptors: integration of novel therapeutics in the management of head and neck cancer. Curr Opin Oncol 13: 168–175, 2001 PubMedCAS Google Scholar
Mattijssen V, Peters HM, Schalkwijk L, Manni JJ, van’t Hof-Grootenboer B, de Mulder PH, Ruiter DJ: E-cadherin expression in head and neck squamous-cell carcinoma is associated with clinical outcome. Int J Cancer 55: 580–585, 1993 PubMedCAS Google Scholar
Wong AS, Gumbiner BM: Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 161: 1191–1203, 2003 PubMedCAS Google Scholar
Yamada KM, Geiger B: Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 9: 76–85, 1997 PubMedCAS Google Scholar
Pollack AL, Barth AI, Altschuler Y, Nelson WJ, Mostov KE: Dynamics of beta-catenin interactions with APC protein regulate epithelial tubulogenesis. J Cell Biol 137: 1651–1662, 1997 ArticleCASPubMed Google Scholar
Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD: Beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 134: 1271–1281, 1996 Google Scholar
Hoschuetzky H, Aberle H, Kemler R: Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127: 1375–1380, 1994 PubMedCAS Google Scholar
Shibata T, Ochiai A, Kanai Y, Akimoto S, Gotoh M, Yasui N, Machinami R, Hirohashi S: Dominant-negative inhibition of the association between beta-catenin and c-34B-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. Oncogene 13: 883–889, 1996 PubMedCAS Google Scholar
Pece S, Chiariello M, Murga C, Gutkind J: Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem 274: 19347–19351, 1999 PubMedCAS Google Scholar
Pece S, Gutkind JS: Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275: 41227–41233, 2000 PubMedCAS Google Scholar
Xu Y, Guo DF, Davidson M, Inagami T, Carpenter G: Interaction of the adaptor protein Shc and the adhesion molecule cadherin. J Biol Chem 272: 13463–13466, 1997 PubMedCAS Google Scholar
Ilic D, Damsky CH: Integrin signaling-it’s where the action is. Curr Opin Cell Biol (in press): 2002
Juliano RL: Signal transduction by cell adhesion receptors and the cytoskeleton: Functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42: 283–323, 2002 PubMedCAS Google Scholar
St Croix B, Florenes VA, Rak JW, Flanagan M, Bhattacharya N, Slingerland JM, Kerbel RS: Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nat Med 2: 1204–1210, 1996 PubMedCAS Google Scholar
St Croix B, Kerbel RS: Cell adhesion and drug resistance in cancer. Curr Opin Oncol 9: 549–556, 1997 CASPubMed Google Scholar
Day M, Zhao X, Vallorosi C, Putzi M, Powell C, Lin C, Day K: E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem 274: 9656–9664, 1999 PubMedCAS Google Scholar
Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. Embo J 16: 2783–2793, 1997 PubMedCAS Google Scholar
Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J: Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol 149: 447–456, 2000 PubMedCAS Google Scholar
Jost M, Huggett TM, Kari C, Rodeck U: Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol Biol Cell 12: 1519–1527, 2001 PubMedCAS Google Scholar
Tran NL, Adams DG, Vaillancourt RR, Heimark RL: Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 277: 32905–32914, 2002 PubMedCAS Google Scholar
Kantak SS, Kramer RH: E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273: 16953–16961, 1998 PubMedCAS Google Scholar
Shen X, Kramer RH: Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165: 1315–1329, 2004 PubMedCAS Google Scholar
Shinohara M, Kodama A, Matozaki T, Fukuhara A, Tachibana K, Nakanishi H, Takai Y: Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1. J Biol Chem 276: 18941–18946, 2001 PubMedCAS Google Scholar
Arregui C, Pathre P, Lilien J, Balsamo J: The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and beta1-integrins. J Cell Biol 149: 1263–1274, 2000 PubMedCAS Google Scholar
Yamada K, Jordan R, Mori M, Speight PM: The relationship between E-cadherin expression, clinical stage and tumour differentiation in oral squamous cell carcinoma. Oral Dis 3: 82–85, 1997 ArticlePubMedCAS Google Scholar
Todd R, Wong DT: Epidermal growth factor receptor (EGFR) biology and human oral cancer. Histol Histopathol 14: 491–500, 1999 PubMedCAS Google Scholar
Bei R, Pompa G, Vitolo D, Moriconi E, Ciocci L, Quaranta M, Frati L, Kraus MH, Muraro R: Co-localization of multiple ErbB receptors in stratified epithelium of oral squamous cell carcinoma. J Pathol 195: 343–348, 2001 PubMedCAS Google Scholar
Ruoslahti E: Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76: 1–20, 1999 ArticlePubMedCAS Google Scholar
Mahoney MG, Simpson A, Jost M, Noe M, Kari C, Pepe D, Choi YW, Uitto J, Rodeck U: Metastasis-associated protein (MTA)1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene 21: 2161–2170, 2002 PubMedCAS Google Scholar
Zhu Z, Sanchez-Sweatman O, Huang X, Wiltrout R, Khokha R, Zhao Q, Gorelik E: Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res 61: 1707–1716, 2001 PubMedCAS Google Scholar
Swan EA, Jasser SA, Holsinger FC, Doan D, Bucana C, Myers JN: Acquisition of anoikis resistance is a critical step in the progression of oral tongue cancer. Oral Oncol 39: 648–655, 2003 PubMedCAS Google Scholar