The signaling mechanism of ROS in tumor progression (original) (raw)
References
Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182. CASPubMed Google Scholar
Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling,5, 781–788. CAS Google Scholar
Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research,39, 353–364. CASPubMed Google Scholar
Chiarugi, P. (2001). The redox regulation of LMW–PTP during cell proliferation or growth inhibition. IUBMB Life,52, 55–59. ArticleCASPubMed Google Scholar
Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13. CASPubMed Google Scholar
Gourlay, C. W., & Ayscough, K. R. (2005). The actin cytoskeleton: A key regulator of apoptosis and ageing? Nature Reviews. Molecular Cell Biology,6, 583–589. CASPubMed Google Scholar
Johann, A. M., von Knethen, A., Lindemann, D., & Brune, B. (2005). Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death and Differentiation, 13, 1533–1540. PubMed Google Scholar
Otani, H. (2004). Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxidants & Redox Signalling,6, 449–469. CAS Google Scholar
Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics,43, 289–330. CASPubMed Google Scholar
Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology,26, 1087–1097. CASPubMed Google Scholar
Ambrosone, C. B. (2000). Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signalling,2, 903–917. ArticleCAS Google Scholar
Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives,106(Suppl. 1), 289–295. CASPubMed Google Scholar
Emerit, I. (1994). Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogenic factors in carcinogenesis. Free Radical Biology & Medicine,16, 99–109. CAS Google Scholar
Winter Toyokuni, S. (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathology International,49, 91–102, Review. Google Scholar
Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience,10, 1881–1896. CASPubMed Google Scholar
Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature,436, 123–127. CASPubMed Google Scholar
Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer,2, 563–572. CASPubMed Google Scholar
Bogenrieder, T., & Herlyn, M. (2003). Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene,22, 6524–6536. CASPubMed Google Scholar
Harlozinska, A. (2005). Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Research,25, 3327–3333. CASPubMed Google Scholar
Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature,411, 375–379. CASPubMed Google Scholar
Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: What can effusions teach us? Diagnostic Cytopathology,33, 316–319. PubMed Google Scholar
Tanaka, T., Bai, Z., Srinoulprasert, Y., Yang, B. G., Hayasaka, H., & Miyasaka, M. (2005). Chemokines in tumor progression and metastasis. Cancer Science,96, 317–322. CASPubMed Google Scholar
Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology,3, 207–214. CASPubMed Google Scholar
Cully, M., You, H., Levine, A. J., & Mak, T. W. (2006). Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews. Cancer,6, 184–192. CASPubMed Google Scholar
Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine,37, 768–784. CAS Google Scholar
Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signalling,7, 472–481. CAS Google Scholar
Hordijk, P. L. (2006). Regulation of NADPH oxidases: The role of Rac proteins. Circulation Research,98, 453–462. CASPubMed Google Scholar
Bokoch, G. M., & Diebold, B. A. (2002). Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood,100, 2692–2696. CASPubMed Google Scholar
Maulik, N., & Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radical Biology & Medicine,33, 1047–1460. CAS Google Scholar
Eyries, M., Collins, T., & Khachigian, L. M. (2004). Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium,11, 133–139. CASPubMed Google Scholar
Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science,12, 377–388. CASPubMed Google Scholar
Wang, Z., Castresana, M. R., & Newman, W. H. (2001). Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochemical and Biophysical Research Communications,285, 669–674. CASPubMed Google Scholar
Tudor, K. S., Hess, K. L., & Cook-Mills, J. M. (2001). Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine,15, 196–211. CASPubMed Google Scholar
Datta, R., Yoshinaga, K., Kaneki, M., Pandey, P., & Kufe, D. (2000). Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta-dependent and required for SAPK activation. Journal of Biological Chemistry,275, 41000–41003. CASPubMed Google Scholar
Mochizuki, T., Furuta, S., Mitsushita, J., Shang, W. H., Ito, M., Yokoo, Y., et al. (2006). Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 25(26), 3699–3707. Google Scholar
Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., ten Dijke, P., et al. (2000). Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Current Biology,10, 535–538. CASPubMed Google Scholar
Akhurst, R. J., & Derynck, R. (2001). TGF-beta signaling in cancer—a double-edged sword. Trends in Cell Biology,11, S44–S51. CASPubMed Google Scholar
Yamamura, Y., Hua, X., Bergelson, S., & Lodish, H. F. (2000). Critical role of Smads and AP-1 complex in transforming growth factor-beta-dependent apoptosis. Journal of Biological Chemistry,275, 36295–36302. CASPubMed Google Scholar
Chan, C. T., Li, S. H., & Verma, S. (2005). Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. American Journal of Physiology. Renal Physiology,289, F679–F684. CASPubMed Google Scholar
Sithanandam, G., Fornwald, L. W., Fields, J., & Anderson, L. M. (2005). Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene,24, 1847–1859. CASPubMed Google Scholar
Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology,16, 667–675. CASPubMed Google Scholar
Segarra, J., Balenci, L., Drenth, T., Maina, F., & Lamballe, F. (2006). Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. Journal of Biological Chemistry,281, 4771–4778. CASPubMed Google Scholar
Ren, Y., Cao, B., Law, S., Xie, Y., Lee, P. Y., Cheung, L., et al. (2005). Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: A prognostic marker of human esophageal squamous cell carcinomas. Clinical Cancer Research,11, 6190–6197. CASPubMed Google Scholar
Daveau, M., Scotte, M., Francois, A., Coulouarn, C., Ros, G., Tallet, Y., et al. (2003). Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Molecular Carcinogenesis,36, 130–141. CASPubMed Google Scholar
Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698. Google Scholar
Dietrich, S., Uppalapati, R., Seiwert, T. Y., & Ma, P. C. (2005). Role of c-MET in upper aerodigestive malignancies—from biology to novel therapies. Journal of Environmental Pathology, Toxicology and Oncology,24(3), 149–162. CASPubMed Google Scholar
Shimao, Y., Nabeshima, K., Inoue, T., & Koono, M. (1999). TPA-enhanced motility and invasion in a highly metastatic variant (L-10) of human rectal adenocarcinoma cell line RCM-1: Selective role of PKC-alpha and its inhibition by a combination of PDBu-induced PKC downregulation and antisense oligonucleotides treatment. Clinical & Experimental Metastasis,17, 351–360. CAS Google Scholar
Aprikian, A. G., Tremblay, L., Han, K., & Chevalier, S. (1997). Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. International Journal of Cancer,72, 498–504. CAS Google Scholar
Schlingemann, J., Hess, J., Wrobel, G., Breitenbach, U., Gebhardt, C., Steinlein, P., et al. (2003). Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. International Journal of Cancer,104, 699–708. CAS Google Scholar
Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min do, S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene,23, 1845–1853. CASPubMed Google Scholar
Debidda, M., Sanna, B., Cossu, A., Posadino, A. M., Tadolini, B., Ventura, C., et al. (2003). NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: Involvement of PKC/Raf/Mek/ERK signalling pathway. International Journal of Oncology,23, 477–482. CASPubMed Google Scholar
Woo, J. H., Park, J. W., Lee, S. H., Kim, Y. H., Lee, I. K., Gabrielson, E., et al. (2003). Dykellic acid inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting nuclear factor kappa B transcriptional activity. Cancer Research,63, 3430–3434. CASPubMed Google Scholar
Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C α and ERK for migration of human hepatoma cell HepG2. Molecular Cancer Research, 4(10), 747–758. Google Scholar
Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology,5, 816–826. CASPubMed Google Scholar
Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews,24, 195–222. CASPubMed Google Scholar
Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Reviews,24, 395–402. CASPubMed Google Scholar
Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science,118(Pt. 15), 3263–3275. CASPubMed Google Scholar
Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions,33(Pt. 5), 891–895. CASPubMed Google Scholar
Grande-Garcia, A., Echarri, A., & Del Pozo, M. A. (2005). Integrin regulation of membrane domain trafficking and Rac targeting. Biochemical Society Transactions,33, 609–613. CASPubMed Google Scholar
Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions,32(Pt. 3), 443–446. CASPubMed Google Scholar
Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell,116, 167–179. CASPubMed Google Scholar
Zhou, H., & Kramer, R. H. (2005). Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. Journal of Biological Chemistry,280, 10624–10635. CASPubMed Google Scholar
Hamelers, I. H., Olivo, C., Mertens, A. E., Pegtel, D. M., van der Kammen, R. A., Sonnenberg, A., et al. (2005). The Rac activator Tiam1 is required for (alpha)3(beta)1-mediated laminin-5 deposition, cell spreading, and cell migration. Journal of Cell Biology,171, 871–881. CASPubMed Google Scholar
Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology,5, 236–241. CASPubMed Google Scholar
Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research,64, 7464–7472. CASPubMed Google Scholar
Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology,158, 357–368. CASPubMed Google Scholar
Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature,436, 123–127. CASPubMed Google Scholar
Yoon, S. O., Park, S. J., Yoon, S. Y., Yun, C. H., & Chung, A. S. (2002). Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. Journal of Biological Chemistry,277, 30271–30282. CASPubMed Google Scholar
Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research,64, 7464–7472. CASPubMed Google Scholar
Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature,435, 347–353. CASPubMed Google Scholar
Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry,274, 13541–1356. CASPubMed Google Scholar
Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry,277, 3101–3108. CASPubMed Google Scholar
Honore, S., Kovacic, H., Pichard, V., Briand, C., & Rognoni, J. B. (2003). Alpha2beta1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): Implication of NADPH oxidase-dependent production of ROS. Experimental Cell Research,285, 59–71. CASPubMed Google Scholar
Groth, S., Schulze, M., Kalthoff, H., Fandrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry,280, 33190–33199. CASPubMed Google Scholar
Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology,289, F816–F825. CASPubMed Google Scholar
Deem, T. L., & Cook-Mills, J. M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: Role of reactive oxygen species. Blood,104, 2385–2393. CASPubMed Google Scholar
Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science,96, 379–386. CASPubMed Google Scholar
Bokoch, G. M., & Knaus, U. G. (2005). NADPH oxidases: Not just for leukocytes anymore! Trends in Biochemical Sciences,28, 502–508. Google Scholar
Ushio-Fukai, M., & Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Molecular and Cellular Biochemistry,264, 85–97. CASPubMed Google Scholar
Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal,19, 1728–1730. Google Scholar
Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America,98, 5550–5555. CASPubMed Google Scholar
Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology,158, 357–368. CASPubMed Google Scholar
Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine,37, 768–784. CAS Google Scholar
van Waveren, C., Sun, Y., Cheung, H. S., & Moraes, C. T. (2006). Oxidative phosphorylation dysfunction modulates expression of extracellular matrix—remodeling genes and invasion. Carcinogenesis,27, 409–418. PubMed Google Scholar
Czarnecka, A. M., Golik, P., & Bartnik, E. (2006). Mitochondrial DNA mutations in human neoplasia. Journal of Applied Genetics,47, 67–78. PubMed Google Scholar
Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research,39, 373–381. CASPubMed Google Scholar
Storz, G., & Polla, B. S. (1996). Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes. EXS,77, 239–254. CASPubMed Google Scholar
Rudolph, J. (2005). Redox regulation of the Cdc25 phosphatases. Antioxidants & Redox Signalling,7, 761–767. CAS Google Scholar
Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry,11, 1163–1182. CASPubMed Google Scholar
Carter, C. A., & Kane, C. J. (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Current Medicinal Chemistry,11, 2883–2902. CASPubMed Google Scholar
Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports,6, 1363–1370. CASPubMed Google Scholar
Petit, I., Goichberg, P., Spiegel, A., Peled, A., Brodie, C., Seger, R., et al. (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation,115, 168–176. CASPubMed Google Scholar
Su, S., DiBattista, J. A., Sun, Y., Li, W. Q., & Zafarullah, M. (1998). Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. Journal of Cellular Biochemistry,70, 517–527. CASPubMed Google Scholar
Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry,274, 32486–32492. CASPubMed Google Scholar
Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C–integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology,22, 5897–5911. CASPubMed Google Scholar
Sliva, D. (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Current Cancer Drug Targets,4, 327–336. CASPubMed Google Scholar
Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine,28, 1387–1404. CAS Google Scholar
Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry,280, 13682–13693. CASPubMed Google Scholar
Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology,14, S227–232. CASPubMed Google Scholar
Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology,14, S241–S245. CASPubMed Google Scholar
Velarde, V., de la Cerda, P. M., Duarte, C., Arancibia, F., Abbott, E., Gonzalez, A., et al. (2004). Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biological Research,37, 419–430. ArticleCASPubMed Google Scholar
Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension,37, 308–312. CASPubMed Google Scholar
Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine,9, 85–89. CASPubMed Google Scholar
Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine,9(1), 85–89. CASPubMed Google Scholar
Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research,39, 353–364. CASPubMed Google Scholar
Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine,33, 1121–1132. CAS Google Scholar
Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell,9, 387–399. CASPubMed Google Scholar
Goldstein, B. J., Mahadev, K., & Wu, X. (2005). Redox paradox: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes,54, 311–321. CASPubMed Google Scholar
Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry,2, 28–32. Google Scholar
Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi, G. A. Jr, & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology,171, 893–904. CASPubMed Google Scholar
Schonwasser, D. C., Marais, R. M., Marshall, C. J., & Parker, P. J. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and Cellular Biology,18(2), 790–798. CASPubMed Google Scholar
Berra, E., Diaz-Meco, M. T., Lozano, J., Frutos, S., Municio, M. M., Sanchez, P., et al. (1995). Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO Journal,14, 6157–6163. CASPubMed Google Scholar
Chernyavsky, A. I., Arredondo, J., Karlsson, E., Wessler, I., & Grando, S. A. (2005). The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry,280, 39220–39228. CASPubMed Google Scholar
Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: Its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry,280, 14675–14683. CASPubMed Google Scholar
Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science,117(Pt. 20), 4619–4628. CASPubMed Google Scholar
Javelaud, D., & Mauviel, A. (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: Implications for carcinogenesis. Oncogene,24, 5742–5750. CASPubMed Google Scholar
Nawshad, A., Lagamba, D., Polad, A., & Hay, E. D. (2005). Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: Implications for embryogenesis and tumor metastasis. Cells, Tissues, Organs,179, 11–23. CASPubMed Google Scholar
Howe, A. K., Aplin, A. E., & Juliano, R. L. (2002). Anchorage-dependent ERK signaling—mechanisms and consequences. Current Opinion in Genetics & Development,12, 30–35. CAS Google Scholar
Gupta, A., Rosenberger, S. F., & Bowden, G. T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis,20, 2063–2073. CASPubMed Google Scholar
Lin, S. J., Shyue, S. K., Liu, P. L., Chen, Y. H., Ku, H. H., Chen, J. W., et al. (2004). Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. Journal of Molecular and Cellular Cardiology,36, 129–139. CASPubMed Google Scholar
Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312. Google Scholar
Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science,12, 377–388. CASPubMed Google Scholar
Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology,16, 667–675. CASPubMed Google Scholar
Kruger, J. S., & Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Molecular Cancer Research,1, 801–809. CASPubMed Google Scholar
Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal,23, 3721–3734. CASPubMed Google Scholar
Wang, J., Frost, J. A., Cobb, M. H., & Ross, E. M. (1999). Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. Journal of Biological Chemistry,274, 31641–31647. CASPubMed Google Scholar
Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions,32(Pt. 3), 443–446. CASPubMed Google Scholar
Fryer, B. H., & Field J. (2005). Rho, Rac, Pak and angiogenesis: Old roles and newly identified responsibilities in endothelial cells. Cancer Letters,229, 13–23. CASPubMed Google Scholar
Schmitz, U., Thommes, K., Beier, I., & Vetter, H. (2002). Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications,291, 687–691. CASPubMed Google Scholar
Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal,19, 1728–1730. CASPubMed Google Scholar
Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T., et al. (2004). Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circulation Research,94, 1219–1226. CASPubMed Google Scholar
Liu, J. W., Chandra, D., Rudd, M. D., Butler, A. P., Pallotta, V., Brown, D., et al. (2005). Induction of prosurvival molecules by apoptotic stimuli: Involvement of FOXO3a and ROS. Oncogene,24, 2020–2031. CASPubMed Google Scholar
Fujii, T., Onohara, N., Maruyama, Y., Tanabe, S., Kobayashi, H., Fukutomi, M., et al. (2005). Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. Journal of Biological Chemistry,280, 23041–23047. CASPubMed Google Scholar
Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 108710–108797. Google Scholar
Hsu, T. C., Young, M. R., Cmarik, J., & Colburn, N. H. (2000). Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radical Biology & Medicine,28, 1338–1348. CAS Google Scholar
Kim, M. H., Cho, H. S., Jung, M., Hong, M. H., Lee, S. K., Shin, B. A., et al. (2005). Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. International Journal of Oncology,26, 1669–1674. CASPubMed Google Scholar
Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer,41, 2462–2478. CASPubMed Google Scholar
Feldman, R. J., Sementchenko, V. I., Gayed, M., Fraig, M. M., & Watson, D. K. (2003). Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Research,63, 4626–4631. CASPubMed Google Scholar
Hahne, J. C., Okuducu, A. F., Kaminski, A., Florin, A., Soncin, F., & Wernert, N. (2005). Ets-1 expression promotes epithelial cell transformation by inducing migration, invasion and anchorage-independent growth. Oncogene,24, 5384–5388. CASPubMed Google Scholar
Huang, H. C., Liu, S. Y., Liang, Y., Liu, Y., Li, J. Z., & Wang, H. Y. (2005). [Transforming growth factor-beta1 stimulates matrix metalloproteinase-9 production through ERK activation pathway and upregulation of Ets-1 protein]. Zhonghua Yi Xue Za Zhi,85, 328–331. CASPubMed Google Scholar
Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry,253, 269–285. CASPubMed Google Scholar
White, L. A., Maute, C., & Brinckerhoff, C. E. (1997). ETS sites in the promoters of the matrix metalloproteinases collagenase (MMP-1) and stromelysin (MMP-3) are auxiliary elements that regulate basal and phorbol-induced transcription. Connective Tissue Research,36, 321–335. ArticleCASPubMed Google Scholar
Wilson, L. A., Gemin, A., Espiritu, R., & Singh, G. (2005). Ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB Journal,19, 2085–2087. CASPubMed Google Scholar
Roberts, A. B., Russo, A., Felici, A., & Flanders, K. C. (2003). Smad3: A key player in pathogenetic mechanisms dependent on TGF-beta. Annals of the New York Academy of Sciences,995, 1–10. ArticleCASPubMed Google Scholar
Leivonen, S. K., Ala-Aho, R., Koli, K., Grenman, R., Peltonen, J., & Kahari, V. M. (2006). Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene,25, 2588–2600. CASPubMed Google Scholar
Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology,16, 667–675. CASPubMed Google Scholar
Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology,17, 548–558. CASPubMed Google Scholar
Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene,24, 5764–5774. CASPubMed Google Scholar
Barrallo-Gimeno, A., & Nieto, M. A. (2005). The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development,132, 3151–3161. CASPubMed Google Scholar
Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature,436, 123–127. CASPubMed Google Scholar
Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene,337, 1–13. CASPubMed Google Scholar
Lai, W. L., & Wong, N. S. (2005). ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radical Biology & Medicine,38, 1585–1593. CAS Google Scholar
Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine,37, 768–784. CAS Google Scholar
Westermarck, J., Li, S. P., Kallunki, T., Han, J., & Kahari, V. M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Molecular and Cellular Biology,21, 2373–2383. CASPubMed Google Scholar
Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research,39, 373–381. CASPubMed Google Scholar
Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Reviews,24, 413–423. CASPubMed Google Scholar
Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews,24, 195–222. CASPubMed Google Scholar
Danen, E. H. (2005). Integrins: Regulators of tissue function and cancer progression. Current Pharmaceutical Design,11, 881–891. CASPubMed Google Scholar
Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene,23, 7928–7946. CASPubMed Google Scholar
Zhu, H. J., Ross, F. P., Cao, X., & Teitelbaum, S. L. (1996). Phorbol myristate acetate transactivates the avian beta 3 integrin gene and induces alpha v beta 3 integrin expression. Journal of Cellular Biochemistry,61, 420–429. CASPubMed Google Scholar
Lai, C. F., Feng, X., Nishimura, R., Teitelbaum, S. L., Avioli, L. V., Ross, F. P., et al. (2000). Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. Journal of Biological Chemistry,275, 36400–36406. CASPubMed Google Scholar
Katabami, K., Mizuno, H., Sano, R., Saito, Y., Ogura, M., Itoh, S., et al. (2005). Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clinical & Experimental Metastasis,22, 539–548. CAS Google Scholar
Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene,23, 7947–7956. CASPubMed Google Scholar
Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology,16, 667–675. CASPubMed Google Scholar
Turcotte, S., Desrosiers, R. R., & Beliveau, R. (2003). HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. Journal of Cell Science,116(Pt. 11), 2247–2260. CASPubMed Google Scholar
Wells, A. (2000). Tumor invasion: Role of growth factor-induced cell motility. Advances in Cancer Research,78, 31–101. CASPubMed Google Scholar
Kataoka, H., Tanaka, H., Nagaike, K., Uchiyama, S., & Itoh, H. (2003). Role of cancer cell–stroma interaction in invasive growth of cancer cells. Human Cell,16, 1–14. ArticlePubMed Google Scholar
Miura, Y., Kozuki, Y., & Yagasaki, K. (2003). Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor. Biochemical and Biophysical Research Communications,305, 160–165. CASPubMed Google Scholar
Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology,289, F816–F825. CASPubMed Google Scholar
Perez, L. M., Milkiewicz, P., Ahmed-Choudhury, J., Elias, E., Ochoa, J. E., Sanchez Pozzi, E. J., et al. (2006). Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: Protective effect of PKA. Free Radical Biology & Medicine,40, 2005–2017. CAS Google Scholar
Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., & Chiarugi, P. (2006). Redox regulation of beta-actin during integrin-mediated cell adhesion. Journal of Biological Chemistry, 281(32), 22983–22991. Google Scholar
Pathak, S. K., Sharma, R. A., Steward, W. P., Mellon, J. K., Griffiths, T. R., & Gescher, A. J. (2005). Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: Targets for chemopreventive strategies. European Journal of Cancer,41, 61–70. CASPubMed Google Scholar
Sikka, S. C. (2003). Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Current Medicinal Chemistry,10, 2679–2692. CASPubMed Google Scholar
Nishikawa, M., Hyoudou, K., Kobayashi, Y., Umeyama, Y., Takakura, Y., & Hashida, M. (2005). Inhibition of metastatic tumor growth by targeted delivery. Journal of Controlled Release,109, 101–107. CASPubMed Google Scholar
Gupta, A., Butts, B., Kwei, K. A., Dvorakova, K., Stratton, S. P., Briehl M. M., et al. (2001). Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Letters,173, 115–125. CASPubMed Google Scholar
Nishino, H., Tokuda, H., Satomi, Y., Masuda, M., Osaka, Y., Yogosawa, S., et al. (2004). Cancer prevention by antioxidants. Biofactors,22, 57–61. CASPubMed Google Scholar
Lin, J. K., Liang, Y. C., & Lin-Shiau, S. Y. (1999). Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology,58, 911–915. CASPubMed Google Scholar
Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M., & Kamata N. (2006). Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial–mesenchymal transition in human squamous carcinoma cells. International Journal of Oncology,28, 487–496. CASPubMed Google Scholar
Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry,253(1–2), 269–285. CASPubMed Google Scholar