The signaling mechanism of ROS in tumor progression (original) (raw)

References

  1. Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.
    CAS PubMed Google Scholar
  2. Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling, 5, 781–788.
    CAS Google Scholar
  3. Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.
    CAS PubMed Google Scholar
  4. Chiarugi, P. (2001). The redox regulation of LMW–PTP during cell proliferation or growth inhibition. IUBMB Life, 52, 55–59.
    Article CAS PubMed Google Scholar
  5. Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.
    CAS PubMed Google Scholar
  6. Gourlay, C. W., & Ayscough, K. R. (2005). The actin cytoskeleton: A key regulator of apoptosis and ageing? Nature Reviews. Molecular Cell Biology, 6, 583–589.
    CAS PubMed Google Scholar
  7. Johann, A. M., von Knethen, A., Lindemann, D., & Brune, B. (2005). Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death and Differentiation, 13, 1533–1540.
    PubMed Google Scholar
  8. Otani, H. (2004). Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxidants & Redox Signalling, 6, 449–469.
    CAS Google Scholar
  9. Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43, 289–330.
    CAS PubMed Google Scholar
  10. Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 1087–1097.
    CAS PubMed Google Scholar
  11. Ambrosone, C. B. (2000). Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signalling, 2, 903–917.
    Article CAS Google Scholar
  12. Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives, 106(Suppl. 1), 289–295.
    CAS PubMed Google Scholar
  13. Emerit, I. (1994). Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogenic factors in carcinogenesis. Free Radical Biology & Medicine, 16, 99–109.
    CAS Google Scholar
  14. Winter Toyokuni, S. (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathology International, 49, 91–102, Review.
    Google Scholar
  15. Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience, 10, 1881–1896.
    CAS PubMed Google Scholar
  16. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.
    CAS PubMed Google Scholar
  17. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.
    CAS PubMed Google Scholar
  18. Bogenrieder, T., & Herlyn, M. (2003). Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene, 22, 6524–6536.
    CAS PubMed Google Scholar
  19. Harlozinska, A. (2005). Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Research, 25, 3327–3333.
    CAS PubMed Google Scholar
  20. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.
    CAS PubMed Google Scholar
  21. Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: What can effusions teach us? Diagnostic Cytopathology, 33, 316–319.
    PubMed Google Scholar
  22. Tanaka, T., Bai, Z., Srinoulprasert, Y., Yang, B. G., Hayasaka, H., & Miyasaka, M. (2005). Chemokines in tumor progression and metastasis. Cancer Science, 96, 317–322.
    CAS PubMed Google Scholar
  23. Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology, 3, 207–214.
    CAS PubMed Google Scholar
  24. Cully, M., You, H., Levine, A. J., & Mak, T. W. (2006). Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews. Cancer, 6, 184–192.
    CAS PubMed Google Scholar
  25. Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.
    CAS Google Scholar
  26. Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signalling, 7, 472–481.
    CAS Google Scholar
  27. Hordijk, P. L. (2006). Regulation of NADPH oxidases: The role of Rac proteins. Circulation Research, 98, 453–462.
    CAS PubMed Google Scholar
  28. Bokoch, G. M., & Diebold, B. A. (2002). Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood, 100, 2692–2696.
    CAS PubMed Google Scholar
  29. Maulik, N., & Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radical Biology & Medicine, 33, 1047–1460.
    CAS Google Scholar
  30. Eyries, M., Collins, T., & Khachigian, L. M. (2004). Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium, 11, 133–139.
    CAS PubMed Google Scholar
  31. Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.
    CAS PubMed Google Scholar
  32. Wang, Z., Castresana, M. R., & Newman, W. H. (2001). Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 285, 669–674.
    CAS PubMed Google Scholar
  33. Tudor, K. S., Hess, K. L., & Cook-Mills, J. M. (2001). Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine, 15, 196–211.
    CAS PubMed Google Scholar
  34. Datta, R., Yoshinaga, K., Kaneki, M., Pandey, P., & Kufe, D. (2000). Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta-dependent and required for SAPK activation. Journal of Biological Chemistry, 275, 41000–41003.
    CAS PubMed Google Scholar
  35. Mochizuki, T., Furuta, S., Mitsushita, J., Shang, W. H., Ito, M., Yokoo, Y., et al. (2006). Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 25(26), 3699–3707.
    Google Scholar
  36. Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., ten Dijke, P., et al. (2000). Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Current Biology, 10, 535–538.
    CAS PubMed Google Scholar
  37. Akhurst, R. J., & Derynck, R. (2001). TGF-beta signaling in cancer—a double-edged sword. Trends in Cell Biology, 11, S44–S51.
    CAS PubMed Google Scholar
  38. Yamamura, Y., Hua, X., Bergelson, S., & Lodish, H. F. (2000). Critical role of Smads and AP-1 complex in transforming growth factor-beta-dependent apoptosis. Journal of Biological Chemistry, 275, 36295–36302.
    CAS PubMed Google Scholar
  39. Chan, C. T., Li, S. H., & Verma, S. (2005). Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. American Journal of Physiology. Renal Physiology, 289, F679–F684.
    CAS PubMed Google Scholar
  40. Sithanandam, G., Fornwald, L. W., Fields, J., & Anderson, L. M. (2005). Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene, 24, 1847–1859.
    CAS PubMed Google Scholar
  41. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.
    CAS PubMed Google Scholar
  42. Segarra, J., Balenci, L., Drenth, T., Maina, F., & Lamballe, F. (2006). Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. Journal of Biological Chemistry, 281, 4771–4778.
    CAS PubMed Google Scholar
  43. Ren, Y., Cao, B., Law, S., Xie, Y., Lee, P. Y., Cheung, L., et al. (2005). Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: A prognostic marker of human esophageal squamous cell carcinomas. Clinical Cancer Research, 11, 6190–6197.
    CAS PubMed Google Scholar
  44. Daveau, M., Scotte, M., Francois, A., Coulouarn, C., Ros, G., Tallet, Y., et al. (2003). Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Molecular Carcinogenesis, 36, 130–141.
    CAS PubMed Google Scholar
  45. Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.
    Google Scholar
  46. Dietrich, S., Uppalapati, R., Seiwert, T. Y., & Ma, P. C. (2005). Role of c-MET in upper aerodigestive malignancies—from biology to novel therapies. Journal of Environmental Pathology, Toxicology and Oncology, 24(3), 149–162.
    CAS PubMed Google Scholar
  47. Shimao, Y., Nabeshima, K., Inoue, T., & Koono, M. (1999). TPA-enhanced motility and invasion in a highly metastatic variant (L-10) of human rectal adenocarcinoma cell line RCM-1: Selective role of PKC-alpha and its inhibition by a combination of PDBu-induced PKC downregulation and antisense oligonucleotides treatment. Clinical & Experimental Metastasis, 17, 351–360.
    CAS Google Scholar
  48. Aprikian, A. G., Tremblay, L., Han, K., & Chevalier, S. (1997). Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. International Journal of Cancer, 72, 498–504.
    CAS Google Scholar
  49. Schlingemann, J., Hess, J., Wrobel, G., Breitenbach, U., Gebhardt, C., Steinlein, P., et al. (2003). Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. International Journal of Cancer, 104, 699–708.
    CAS Google Scholar
  50. Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min do, S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23, 1845–1853.
    CAS PubMed Google Scholar
  51. Debidda, M., Sanna, B., Cossu, A., Posadino, A. M., Tadolini, B., Ventura, C., et al. (2003). NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: Involvement of PKC/Raf/Mek/ERK signalling pathway. International Journal of Oncology, 23, 477–482.
    CAS PubMed Google Scholar
  52. Woo, J. H., Park, J. W., Lee, S. H., Kim, Y. H., Lee, I. K., Gabrielson, E., et al. (2003). Dykellic acid inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting nuclear factor kappa B transcriptional activity. Cancer Research, 63, 3430–3434.
    CAS PubMed Google Scholar
  53. Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C α and ERK for migration of human hepatoma cell HepG2. Molecular Cancer Research, 4(10), 747–758.
    Google Scholar
  54. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.
    CAS PubMed Google Scholar
  55. Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.
    CAS PubMed Google Scholar
  56. Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Reviews, 24, 395–402.
    CAS PubMed Google Scholar
  57. Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science, 118(Pt. 15), 3263–3275.
    CAS PubMed Google Scholar
  58. Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions, 33(Pt. 5), 891–895.
    CAS PubMed Google Scholar
  59. Grande-Garcia, A., Echarri, A., & Del Pozo, M. A. (2005). Integrin regulation of membrane domain trafficking and Rac targeting. Biochemical Society Transactions, 33, 609–613.
    CAS PubMed Google Scholar
  60. Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.
    CAS PubMed Google Scholar
  61. Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167–179.
    CAS PubMed Google Scholar
  62. Zhou, H., & Kramer, R. H. (2005). Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. Journal of Biological Chemistry, 280, 10624–10635.
    CAS PubMed Google Scholar
  63. Hamelers, I. H., Olivo, C., Mertens, A. E., Pegtel, D. M., van der Kammen, R. A., Sonnenberg, A., et al. (2005). The Rac activator Tiam1 is required for (alpha)3(beta)1-mediated laminin-5 deposition, cell spreading, and cell migration. Journal of Cell Biology, 171, 871–881.
    CAS PubMed Google Scholar
  64. Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 5, 236–241.
    CAS PubMed Google Scholar
  65. Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.
    CAS PubMed Google Scholar
  66. Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.
    CAS PubMed Google Scholar
  67. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.
    CAS PubMed Google Scholar
  68. Yoon, S. O., Park, S. J., Yoon, S. Y., Yun, C. H., & Chung, A. S. (2002). Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. Journal of Biological Chemistry, 277, 30271–30282.
    CAS PubMed Google Scholar
  69. Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.
    CAS PubMed Google Scholar
  70. Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435, 347–353.
    CAS PubMed Google Scholar
  71. Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry, 274, 13541–1356.
    CAS PubMed Google Scholar
  72. Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry, 277, 3101–3108.
    CAS PubMed Google Scholar
  73. Honore, S., Kovacic, H., Pichard, V., Briand, C., & Rognoni, J. B. (2003). Alpha2beta1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): Implication of NADPH oxidase-dependent production of ROS. Experimental Cell Research, 285, 59–71.
    CAS PubMed Google Scholar
  74. Groth, S., Schulze, M., Kalthoff, H., Fandrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry, 280, 33190–33199.
    CAS PubMed Google Scholar
  75. Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.
    CAS PubMed Google Scholar
  76. Deem, T. L., & Cook-Mills, J. M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: Role of reactive oxygen species. Blood, 104, 2385–2393.
    CAS PubMed Google Scholar
  77. Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science, 96, 379–386.
    CAS PubMed Google Scholar
  78. Bokoch, G. M., & Knaus, U. G. (2005). NADPH oxidases: Not just for leukocytes anymore! Trends in Biochemical Sciences, 28, 502–508.
    Google Scholar
  79. Ushio-Fukai, M., & Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Molecular and Cellular Biochemistry, 264, 85–97.
    CAS PubMed Google Scholar
  80. Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.
    Google Scholar
  81. Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America, 98, 5550–5555.
    CAS PubMed Google Scholar
  82. Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.
    CAS PubMed Google Scholar
  83. Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.
    CAS Google Scholar
  84. van Waveren, C., Sun, Y., Cheung, H. S., & Moraes, C. T. (2006). Oxidative phosphorylation dysfunction modulates expression of extracellular matrix—remodeling genes and invasion. Carcinogenesis, 27, 409–418.
    PubMed Google Scholar
  85. Czarnecka, A. M., Golik, P., & Bartnik, E. (2006). Mitochondrial DNA mutations in human neoplasia. Journal of Applied Genetics, 47, 67–78.
    PubMed Google Scholar
  86. Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.
    CAS PubMed Google Scholar
  87. Storz, G., & Polla, B. S. (1996). Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes. EXS, 77, 239–254.
    CAS PubMed Google Scholar
  88. Rudolph, J. (2005). Redox regulation of the Cdc25 phosphatases. Antioxidants & Redox Signalling, 7, 761–767.
    CAS Google Scholar
  89. Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.
    CAS PubMed Google Scholar
  90. Carter, C. A., & Kane, C. J. (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Current Medicinal Chemistry, 11, 2883–2902.
    CAS PubMed Google Scholar
  91. Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports, 6, 1363–1370.
    CAS PubMed Google Scholar
  92. Petit, I., Goichberg, P., Spiegel, A., Peled, A., Brodie, C., Seger, R., et al. (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 115, 168–176.
    CAS PubMed Google Scholar
  93. Su, S., DiBattista, J. A., Sun, Y., Li, W. Q., & Zafarullah, M. (1998). Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. Journal of Cellular Biochemistry, 70, 517–527.
    CAS PubMed Google Scholar
  94. Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry, 274, 32486–32492.
    CAS PubMed Google Scholar
  95. Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C–integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology, 22, 5897–5911.
    CAS PubMed Google Scholar
  96. Sliva, D. (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Current Cancer Drug Targets, 4, 327–336.
    CAS PubMed Google Scholar
  97. Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine, 28, 1387–1404.
    CAS Google Scholar
  98. Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry, 280, 13682–13693.
    CAS PubMed Google Scholar
  99. Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology, 14, S227–232.
    CAS PubMed Google Scholar
  100. Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.
    CAS PubMed Google Scholar
  101. Velarde, V., de la Cerda, P. M., Duarte, C., Arancibia, F., Abbott, E., Gonzalez, A., et al. (2004). Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biological Research, 37, 419–430.
    Article CAS PubMed Google Scholar
  102. Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.
    CAS PubMed Google Scholar
  103. Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9, 85–89.
    CAS PubMed Google Scholar
  104. Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9(1), 85–89.
    CAS PubMed Google Scholar
  105. Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.
    CAS PubMed Google Scholar
  106. Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine, 33, 1121–1132.
    CAS Google Scholar
  107. Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell, 9, 387–399.
    CAS PubMed Google Scholar
  108. Goldstein, B. J., Mahadev, K., & Wu, X. (2005). Redox paradox: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes, 54, 311–321.
    CAS PubMed Google Scholar
  109. Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 2, 28–32.
    Google Scholar
  110. Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi, G. A. Jr, & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology, 171, 893–904.
    CAS PubMed Google Scholar
  111. Schonwasser, D. C., Marais, R. M., Marshall, C. J., & Parker, P. J. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and Cellular Biology, 18(2), 790–798.
    CAS PubMed Google Scholar
  112. Berra, E., Diaz-Meco, M. T., Lozano, J., Frutos, S., Municio, M. M., Sanchez, P., et al. (1995). Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO Journal, 14, 6157–6163.
    CAS PubMed Google Scholar
  113. Chernyavsky, A. I., Arredondo, J., Karlsson, E., Wessler, I., & Grando, S. A. (2005). The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry, 280, 39220–39228.
    CAS PubMed Google Scholar
  114. Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: Its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry, 280, 14675–14683.
    CAS PubMed Google Scholar
  115. Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt. 20), 4619–4628.
    CAS PubMed Google Scholar
  116. Javelaud, D., & Mauviel, A. (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: Implications for carcinogenesis. Oncogene, 24, 5742–5750.
    CAS PubMed Google Scholar
  117. Nawshad, A., Lagamba, D., Polad, A., & Hay, E. D. (2005). Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: Implications for embryogenesis and tumor metastasis. Cells, Tissues, Organs, 179, 11–23.
    CAS PubMed Google Scholar
  118. Howe, A. K., Aplin, A. E., & Juliano, R. L. (2002). Anchorage-dependent ERK signaling—mechanisms and consequences. Current Opinion in Genetics & Development, 12, 30–35.
    CAS Google Scholar
  119. Gupta, A., Rosenberger, S. F., & Bowden, G. T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20, 2063–2073.
    CAS PubMed Google Scholar
  120. Lin, S. J., Shyue, S. K., Liu, P. L., Chen, Y. H., Ku, H. H., Chen, J. W., et al. (2004). Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. Journal of Molecular and Cellular Cardiology, 36, 129–139.
    CAS PubMed Google Scholar
  121. Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.
    Google Scholar
  122. Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.
    CAS PubMed Google Scholar
  123. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.
    CAS PubMed Google Scholar
  124. Kruger, J. S., & Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Molecular Cancer Research, 1, 801–809.
    CAS PubMed Google Scholar
  125. Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23, 3721–3734.
    CAS PubMed Google Scholar
  126. Wang, J., Frost, J. A., Cobb, M. H., & Ross, E. M. (1999). Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. Journal of Biological Chemistry, 274, 31641–31647.
    CAS PubMed Google Scholar
  127. Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.
    CAS PubMed Google Scholar
  128. Fryer, B. H., & Field J. (2005). Rho, Rac, Pak and angiogenesis: Old roles and newly identified responsibilities in endothelial cells. Cancer Letters, 229, 13–23.
    CAS PubMed Google Scholar
  129. Schmitz, U., Thommes, K., Beier, I., & Vetter, H. (2002). Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 291, 687–691.
    CAS PubMed Google Scholar
  130. Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.
    CAS PubMed Google Scholar
  131. Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T., et al. (2004). Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circulation Research, 94, 1219–1226.
    CAS PubMed Google Scholar
  132. Liu, J. W., Chandra, D., Rudd, M. D., Butler, A. P., Pallotta, V., Brown, D., et al. (2005). Induction of prosurvival molecules by apoptotic stimuli: Involvement of FOXO3a and ROS. Oncogene, 24, 2020–2031.
    CAS PubMed Google Scholar
  133. Fujii, T., Onohara, N., Maruyama, Y., Tanabe, S., Kobayashi, H., Fukutomi, M., et al. (2005). Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. Journal of Biological Chemistry, 280, 23041–23047.
    CAS PubMed Google Scholar
  134. Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 108710–108797.
    Google Scholar
  135. Hsu, T. C., Young, M. R., Cmarik, J., & Colburn, N. H. (2000). Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radical Biology & Medicine, 28, 1338–1348.
    CAS Google Scholar
  136. Kim, M. H., Cho, H. S., Jung, M., Hong, M. H., Lee, S. K., Shin, B. A., et al. (2005). Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. International Journal of Oncology, 26, 1669–1674.
    CAS PubMed Google Scholar
  137. Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer, 41, 2462–2478.
    CAS PubMed Google Scholar
  138. Feldman, R. J., Sementchenko, V. I., Gayed, M., Fraig, M. M., & Watson, D. K. (2003). Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Research, 63, 4626–4631.
    CAS PubMed Google Scholar
  139. Hahne, J. C., Okuducu, A. F., Kaminski, A., Florin, A., Soncin, F., & Wernert, N. (2005). Ets-1 expression promotes epithelial cell transformation by inducing migration, invasion and anchorage-independent growth. Oncogene, 24, 5384–5388.
    CAS PubMed Google Scholar
  140. Huang, H. C., Liu, S. Y., Liang, Y., Liu, Y., Li, J. Z., & Wang, H. Y. (2005). [Transforming growth factor-beta1 stimulates matrix metalloproteinase-9 production through ERK activation pathway and upregulation of Ets-1 protein]. Zhonghua Yi Xue Za Zhi, 85, 328–331.
    CAS PubMed Google Scholar
  141. Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253, 269–285.
    CAS PubMed Google Scholar
  142. White, L. A., Maute, C., & Brinckerhoff, C. E. (1997). ETS sites in the promoters of the matrix metalloproteinases collagenase (MMP-1) and stromelysin (MMP-3) are auxiliary elements that regulate basal and phorbol-induced transcription. Connective Tissue Research, 36, 321–335.
    Article CAS PubMed Google Scholar
  143. Wilson, L. A., Gemin, A., Espiritu, R., & Singh, G. (2005). Ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB Journal, 19, 2085–2087.
    CAS PubMed Google Scholar
  144. Roberts, A. B., Russo, A., Felici, A., & Flanders, K. C. (2003). Smad3: A key player in pathogenetic mechanisms dependent on TGF-beta. Annals of the New York Academy of Sciences, 995, 1–10.
    Article CAS PubMed Google Scholar
  145. Leivonen, S. K., Ala-Aho, R., Koli, K., Grenman, R., Peltonen, J., & Kahari, V. M. (2006). Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene, 25, 2588–2600.
    CAS PubMed Google Scholar
  146. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.
    CAS PubMed Google Scholar
  147. Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548–558.
    CAS PubMed Google Scholar
  148. Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.
    CAS PubMed Google Scholar
  149. Barrallo-Gimeno, A., & Nieto, M. A. (2005). The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development, 132, 3151–3161.
    CAS PubMed Google Scholar
  150. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.
    CAS PubMed Google Scholar
  151. Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.
    CAS PubMed Google Scholar
  152. Lai, W. L., & Wong, N. S. (2005). ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radical Biology & Medicine, 38, 1585–1593.
    CAS Google Scholar
  153. Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.
    CAS Google Scholar
  154. Westermarck, J., Li, S. P., Kallunki, T., Han, J., & Kahari, V. M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Molecular and Cellular Biology, 21, 2373–2383.
    CAS PubMed Google Scholar
  155. Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.
    CAS PubMed Google Scholar
  156. Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Reviews, 24, 413–423.
    CAS PubMed Google Scholar
  157. Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.
    CAS PubMed Google Scholar
  158. Danen, E. H. (2005). Integrins: Regulators of tissue function and cancer progression. Current Pharmaceutical Design, 11, 881–891.
    CAS PubMed Google Scholar
  159. Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.
    CAS PubMed Google Scholar
  160. Zhu, H. J., Ross, F. P., Cao, X., & Teitelbaum, S. L. (1996). Phorbol myristate acetate transactivates the avian beta 3 integrin gene and induces alpha v beta 3 integrin expression. Journal of Cellular Biochemistry, 61, 420–429.
    CAS PubMed Google Scholar
  161. Lai, C. F., Feng, X., Nishimura, R., Teitelbaum, S. L., Avioli, L. V., Ross, F. P., et al. (2000). Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. Journal of Biological Chemistry, 275, 36400–36406.
    CAS PubMed Google Scholar
  162. Katabami, K., Mizuno, H., Sano, R., Saito, Y., Ogura, M., Itoh, S., et al. (2005). Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clinical & Experimental Metastasis, 22, 539–548.
    CAS Google Scholar
  163. Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 23, 7947–7956.
    CAS PubMed Google Scholar
  164. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.
    CAS PubMed Google Scholar
  165. Turcotte, S., Desrosiers, R. R., & Beliveau, R. (2003). HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. Journal of Cell Science, 116(Pt. 11), 2247–2260.
    CAS PubMed Google Scholar
  166. Wells, A. (2000). Tumor invasion: Role of growth factor-induced cell motility. Advances in Cancer Research, 78, 31–101.
    CAS PubMed Google Scholar
  167. Kataoka, H., Tanaka, H., Nagaike, K., Uchiyama, S., & Itoh, H. (2003). Role of cancer cell–stroma interaction in invasive growth of cancer cells. Human Cell, 16, 1–14.
    Article PubMed Google Scholar
  168. Miura, Y., Kozuki, Y., & Yagasaki, K. (2003). Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor. Biochemical and Biophysical Research Communications, 305, 160–165.
    CAS PubMed Google Scholar
  169. Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.
    CAS PubMed Google Scholar
  170. Perez, L. M., Milkiewicz, P., Ahmed-Choudhury, J., Elias, E., Ochoa, J. E., Sanchez Pozzi, E. J., et al. (2006). Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: Protective effect of PKA. Free Radical Biology & Medicine, 40, 2005–2017.
    CAS Google Scholar
  171. Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., & Chiarugi, P. (2006). Redox regulation of beta-actin during integrin-mediated cell adhesion. Journal of Biological Chemistry, 281(32), 22983–22991.
    Google Scholar
  172. Pathak, S. K., Sharma, R. A., Steward, W. P., Mellon, J. K., Griffiths, T. R., & Gescher, A. J. (2005). Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: Targets for chemopreventive strategies. European Journal of Cancer, 41, 61–70.
    CAS PubMed Google Scholar
  173. Sikka, S. C. (2003). Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Current Medicinal Chemistry, 10, 2679–2692.
    CAS PubMed Google Scholar
  174. Nishikawa, M., Hyoudou, K., Kobayashi, Y., Umeyama, Y., Takakura, Y., & Hashida, M. (2005). Inhibition of metastatic tumor growth by targeted delivery. Journal of Controlled Release, 109, 101–107.
    CAS PubMed Google Scholar
  175. Gupta, A., Butts, B., Kwei, K. A., Dvorakova, K., Stratton, S. P., Briehl M. M., et al. (2001). Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Letters, 173, 115–125.
    CAS PubMed Google Scholar
  176. Nishino, H., Tokuda, H., Satomi, Y., Masuda, M., Osaka, Y., Yogosawa, S., et al. (2004). Cancer prevention by antioxidants. Biofactors, 22, 57–61.
    CAS PubMed Google Scholar
  177. Lin, J. K., Liang, Y. C., & Lin-Shiau, S. Y. (1999). Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology, 58, 911–915.
    CAS PubMed Google Scholar
  178. Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M., & Kamata N. (2006). Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial–mesenchymal transition in human squamous carcinoma cells. International Journal of Oncology, 28, 487–496.
    CAS PubMed Google Scholar
  179. Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253(1–2), 269–285.
    CAS PubMed Google Scholar

Download references