A tumor suppressor role for PP2A-B56α through negative regulation of c-Myc and other key oncoproteins (original) (raw)

References

  1. Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 22, 2954–2963.
    Article PubMed CAS Google Scholar
  2. Parsons, R. (1998). Phosphatases and tumorigenesis. Current Opinion in Oncology, 10, 88–91.
    Article PubMed CAS Google Scholar
  3. Van Hoof, C., & Goris, J. (2004). PP2A fulfills its promises as tumor suppressor: Which subunits are important. Cancer Cell, 5, 105–106.
    Article PubMed Google Scholar
  4. Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer Letters, 170, 1–13.
    Article PubMed CAS Google Scholar
  5. Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). CDC25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.
    Article PubMed CAS Google Scholar
  6. Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20, 1021–1029.
    Article PubMed CAS Google Scholar
  7. Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Molecular and Cellular Biology, 22, 3674–3684.
    Article PubMed CAS Google Scholar
  8. Lin, X. H., Walter, J., Scheidtmann, K., Ohst, K., Newport, J., & Walter, G. (1998). Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 95, 14693–14698.
    Article PubMed CAS Google Scholar
  9. Mayer-Jaekel, R. E., Ohkura, H., Gomes, R., Sunkel, C. E., Baumgartner, S., Hemmings, B. A., et al. (1993). The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72, 621–633.
    Article PubMed CAS Google Scholar
  10. Sakai, A., & Fujiki, H. (1991). Promotion of BALB/3T3 cell transformation by the okadaic acid class of tumor promoters, okadaic acid and dinophysistoxin-1. Japanese Journal of Cancer Research, 82, 518–523.
    PubMed CAS Google Scholar
  11. Nagao, M., Sakai, R., Kitagawa, Y., Ikeda, I., Sasaki, K., Shima, H., et al. (1989). Role of protein phosphatases in malignant transformation. Princess Takamatsu Symposia, 20, 177–184.
    PubMed CAS Google Scholar
  12. Zheng, B., Woo, C. F., & Kuo, J. F. (1991). Mitotic arrest and enhanced nuclear protein phosphorylation in human leukemia K562 cells by okadaic acid, a potent protein phosphatase inhibitor and tumor promoter. The Journal of Biological Chemistry, 266, 10031–10034.
    PubMed CAS Google Scholar
  13. Kremmer, E., Ohst, K., Kiefer, J., Brewis, N., & Walter, G. (1997). Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: Abundant expression of both forms in cells. Molecular and Cellular Biology, 17, 1692–1701.
    PubMed CAS Google Scholar
  14. Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 1239–1251.
    Article PubMed CAS Google Scholar
  15. Shenolikar, S. (1994). Protein serine/threonine phosphatases—new avenues for cell regulation. Annual Review of Cell Biology, 10, 55–86.
    Article PubMed CAS Google Scholar
  16. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 5, 127–136.
    Article PubMed CAS Google Scholar
  17. Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.
    Article PubMed CAS Google Scholar
  18. Virshup, D. M. (2000). Protein phosphatase 2A: A panoply of enzymes. Current Opinion in Cell Biology, 12, 180–185.
    Article PubMed CAS Google Scholar
  19. Schonthal, A. H. (1998). Role of PP2A in intracellular signal transduction pathways. Frontiers in Bioscience, 3, D1262–D1273.
    PubMed CAS Google Scholar
  20. Jaumot, M., & Hancock, J. F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene, 20, 3949–3958.
    Article PubMed CAS Google Scholar
  21. Abraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B. A., et al. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. The Journal of Biological Chemistry, 275, 22300–22304.
    Article PubMed CAS Google Scholar
  22. Yang, J., Wu, J., Tan, C., & Klein, P. S. (2003). PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development, 130, 5569–5578.
    Article PubMed CAS Google Scholar
  23. Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. The EMBO Journal, 26, 402–411.
    Article PubMed CAS Google Scholar
  24. Chen, J., St-Germain, J. R., & Li, Q. (2005). B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Molecular and Cellular Biology, 25, 525–532.
    Article PubMed CAS Google Scholar
  25. Goodman, R. H., & Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes and Development, 14, 1553–1577.
    PubMed CAS Google Scholar
  26. Dozier, C., Bonyadi, M., Baricault, L., Tonasso, L., & Darbon, J. M. (2004). Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B′ regulatory subunit. Biology of the Cell, 96, 509–517.
    Article PubMed CAS Google Scholar
  27. Liang, X., Reed, E., & Yu, J. J. (2006). Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. International Journal of Molecular Medicine, 17, 703–708.
    PubMed CAS Google Scholar
  28. Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., et al. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. The EMBO Journal, 19, 562–571.
    Article PubMed CAS Google Scholar
  29. Ito, A., Koma, Y., Sohda, M., Watabe, K., Nagano, T., Misumi, Y., et al. (2003). Localization of the PP2A B56gamma regulatory subunit at the Golgi complex: Possible role in vesicle transport and migration. American Journal of Pathology, 162, 479–489.
    PubMed CAS Google Scholar
  30. Koma, Y. I., Ito, A., Watabe, K., Kimura, S. H., & Kitamura, Y. (2004). A truncated isoform of the PP2A B56gamma regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance. Histology and Histopathology, 19, 391–400.
    PubMed CAS Google Scholar
  31. Ma, J., Arnold, H. K., Lilly, M. B., Sears, R. C., & Kraft, A. S. (2007). Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene, 26, 5145–5153.
    Article PubMed CAS Google Scholar
  32. Allen, J. D., & Berns, A. (1996). Complementation tagging of cooperating oncogenes in knockout mice. Seminars in Cancer Biology, 7, 299–306.
    Article PubMed CAS Google Scholar
  33. Margolis, S. S., Perry, J. A., Forester, C. M., Nutt, L. K., Guo, Y., Jardim, M. J., et al. (2006). Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell, 127, 759–773.
    Article PubMed CAS Google Scholar
  34. Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proceedings of the National Academy of Sciences of the United States of America, 104, 2979–2984.
    Article PubMed CAS Google Scholar
  35. Firulli, B. A., Howard, M. J., McDaid, J. R., McIlreavey, L., Dionne, K. M., Centonze, V. E., et al. (2003). PKA, PKC, and the protein phosphatase 2A influence HAND factor function: A mechanism for tissue-specific transcriptional regulation. Molecular Cell, 12, 1225–1237.
    Article PubMed CAS Google Scholar
  36. White, R. J. (2005). RNA polymerases I and III, growth control and cancer. Nature Reviews. Molecular Cell Biology, 6, 69–78.
    Article PubMed CAS Google Scholar
  37. Cole, M. D. (1986). The myc oncogene: Its role in transformation and differentiation. Annual Review of Genetics, 20, 361–384.
    Article PubMed CAS Google Scholar
  38. Luscher, B., & Eisenman, R. N. (1990). New light on Myc and Myb. Part I. Myc. Genes and Development, 4, 2025–2035.
    Article PubMed CAS Google Scholar
  39. Prendergast, G. C. (1999). Mechanisms of apoptosis by c-Myc. Oncogene, 18, 2967–2987.
    Article PubMed CAS Google Scholar
  40. Baudino, T. A., McKay, C., Pendeville-Samain, H., Nilsson, J. A., Maclean, K. H., White, E. L., et al. (2002). c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 16, 2530–2543.
    Article PubMed CAS Google Scholar
  41. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R., & Bradley, A. (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes and Development, 7, 671–682.
    Article PubMed CAS Google Scholar
  42. Nesbit, C. E., Tersak, J. M., & Prochownik, E. V. (1999). MYC oncogenes and human neoplastic disease. Oncogene, 18, 3004–3016.
    Article PubMed CAS Google Scholar
  43. Felsher, D. W., & Bishop, J. M. (1999). Reversible tumorigenesis by MYC in hematopoietic lineages. Molecular Cell, 4, 199–207.
    Article PubMed CAS Google Scholar
  44. Pelengaris, S., Littlewood, T., Khan, M., Elia, G., & Evan, G. (1999). Reversible activation of c-Myc in skin: Induction of a complex neoplastic phenotype by a single oncogenic lesion. Molecular Cell, 3, 565–577.
    Article PubMed CAS Google Scholar
  45. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.
    Article PubMed CAS Google Scholar
  46. Coppola, J. A., & Cole, M. D. (1986). Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature, 320, 760–763.
    Article PubMed CAS Google Scholar
  47. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6, 308–318.
    Article PubMed CAS Google Scholar
  48. Flinn, E. M., Busch, C. M., & Wright, A. P. (1998). myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Molecular and Cellular Biology, 18, 5961–5969.
    PubMed CAS Google Scholar
  49. Jones, T. R., & Cole, M. D. (1987). Rapid cytoplasmic turnover of c-myc mRNA: Requirement of the 3″ untranslated sequences. Molecular and Cellular Biology, 7, 4513–4521.
    PubMed CAS Google Scholar
  50. Kelly, K., Cochran, B. H., Stiles, C. D., & Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell, 35, 603–610.
    Article PubMed CAS Google Scholar
  51. Sears, R., Leone, G., DeGregori, J., & Nevins, J. R. (1999). Ras enhances Myc protein stability. Molecular Cell, 3, 169–179.
    Article PubMed CAS Google Scholar
  52. Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., & Nevins, J. R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes and Development, 14, 2501–2514.
    Article PubMed CAS Google Scholar
  53. Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26, 2832–2844.
    Article PubMed CAS Google Scholar
  54. Seth, A., Gonzalez, F. A., Gupta, S., Raden, D. L., & Davis, R. J. (1992). Signal transduction within the nucleus by mitogen-activated protein kinase. The Journal of Biological Chemistry, 267, 24796–24804.
    PubMed CAS Google Scholar
  55. Pulverer, B. J., Fisher, C., Vousden, K., Littlewood, T., Evan, G., & Woodgett, J. R. (1994). Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene, 9, 59–70.
    PubMed CAS Google Scholar
  56. Noguchi, K., Kitanaka, C., Yamana, H., Kokubu, A., Mochizuki, T., & Kuchino, Y. (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. The Journal of Biological Chemistry, 274, 32580–32587.
    Article PubMed CAS Google Scholar
  57. Lutterbach, B., & Hann, S. R. (1994). Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Molecular and Cellular Biology, 14, 5510–5522.
    PubMed CAS Google Scholar
  58. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.
    Article PubMed CAS Google Scholar
  59. Welcker, M., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101, 9085–9090.
    Article PubMed CAS Google Scholar
  60. Yada, M., Hatakeyama, S., Kamura, T., Nishiyama, M., Tsunematsu, R., Imaki, H., et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. The EMBO Journal, 23, 2116–2125.
    Article PubMed CAS Google Scholar
  61. Malempati, S., Tibbitts, D., Cunningham, M., Akkari, Y., Olson, S., Fan, G., et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia, 20, 1572–1581.
    Article PubMed CAS Google Scholar
  62. Chen, J., Martin, B. L., & Brautigan, D. L. (1992). Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science, 257, 1261–1264.
    Article PubMed CAS Google Scholar
  63. Xie, H., & Clarke, S. (1993). Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. The Journal of Biological Chemistry, 268, 13364–13371.
    PubMed CAS Google Scholar
  64. Lee, J., & Stock, J. (1993). Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. The Journal of Biological Chemistry, 268, 19192–19195.
    PubMed CAS Google Scholar
  65. Favre, B., Zolnierowicz, S., Turowski, P., & Hemmings, B. A. (1994). The catalytic subunit of protein phosphatase 2A is carboxyl-methylated in vivo. The Journal of Biological Chemistry, 269, 16311–16317.
    PubMed CAS Google Scholar
  66. Bryant, J. C., Westphal, R. S., & Wadzinski, B. E. (1999). Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochemical Journal, 339(Pt 2), 241–246.
    Article PubMed CAS Google Scholar
  67. Tolstykh, T., Lee, J., Vafai, S., & Stock, J. B. (2000). Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO Journal, 19, 5682–5691.
    Article PubMed CAS Google Scholar
  68. Yu, X. X., Du, X., Moreno, C. S., Green, R. E., Ogris, E., Feng, Q., et al. (2001). Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Molecular and Cellular Biology, 12, 185–199.
    Article CAS Google Scholar
  69. Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., et al. (2002). Cyclin G recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9, 761–771.
    Article PubMed CAS Google Scholar
  70. Bhasin, N., Cunha, S. R., Mudannayake, M., Gigena, M. S., Rogers, T. B., & Mohler, P. J. (2007). Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology, 293, H109–H119.
    Article PubMed CAS Google Scholar
  71. Li, X., Yost, H. J., Virshup, D. M., & Seeling, J. M. (2001). Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. The EMBO Journal, 20, 4122–4131.
    Article PubMed CAS Google Scholar
  72. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., & Polakis, P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current Biology, 8, 573–581.
    Article PubMed CAS Google Scholar
  73. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.
    Article PubMed CAS Google Scholar
  74. Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 3020–3023.
    Article PubMed CAS Google Scholar
  75. Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., & Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283, 2089–2091.
    Article PubMed CAS Google Scholar
  76. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.
    Article PubMed CAS Google Scholar
  77. Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., & May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. The Journal of Biological Chemistry, 277, 22847–22852.
    Article PubMed CAS Google Scholar
  78. Ruvolo, P. P., Deng, X., & May, W. S. (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia, 15, 515–522.
    Article PubMed CAS Google Scholar
  79. Deng, X., Gao, F., Flagg, T., Anderson, J., & May, W. S. (2006). Bcl2's flexible loop domain regulates p53 binding and survival. Molecular and Cellular Biology, 26, 4421–4434.
    Article PubMed CAS Google Scholar
  80. Deng, X., Gao, F., Flagg, T., & May Jr., W. S. (2004). Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proceedings of the National Academy of Sciences of the United States of America, 101, 153–158.
    Article PubMed CAS Google Scholar
  81. Xin, M., & Deng, X. (2006). Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. The Journal of Biological Chemistry, 281, 18859–18867.
    Article PubMed CAS Google Scholar
  82. Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and Cellular Biology, 23, 6350–6362.
    Article PubMed CAS Google Scholar
  83. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.
    Article PubMed CAS Google Scholar
  84. Ozaki, S., Ikeda, S., Ishizaki, Y., Kurihara, T., Tokumoto, N., Iseki, M., et al. (2005). Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncology Reports, 14, 1437–1443.
    PubMed CAS Google Scholar
  85. Shiina, H., Igawa, M., Shigeno, K., Terashima, M., Deguchi, M., Yamanaka, M., et al. (2002). Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 genes in bladder cancer. Journal of Urology, 168, 2220–2226.
    Article PubMed CAS Google Scholar
  86. Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 282, 284–287.
    Article PubMed CAS Google Scholar
  87. Takayasu, H., Horie, H., Hiyama, E., Matsunaga, T., Hayashi, Y., Watanabe, Y., et al. (2001). Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clinical Cancer Research, 7, 901–908.
    PubMed CAS Google Scholar
  88. Li, Q., Dashwood, W. M., Zhong, X., Nakagama, H., & Dashwood, R. H. (2007). Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving beta-catenin, c-Myc and E2F1. Oncogene, 26, 6194–6202.
    Article PubMed CAS Google Scholar
  89. Eischen, C. M., Packham, G., Nip, J., Fee, B. E., Hiebert, S. W., Zambetti, G. P., et al. (2001). Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene, 20, 6983–6993.
    Article PubMed CAS Google Scholar
  90. Eischen, C. M., Woo, D., Roussel, M. F., & Cleveland, J. L. (2001). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Molecular and Cellular Biology, 21, 5063–5070.
    Article PubMed CAS Google Scholar
  91. Patel, J. H., & McMahon, S. B. (2007). BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. The Journal of Biological Chemistry, 282, 5–13.
    Article PubMed CAS Google Scholar
  92. Strasser, A., Harris, A. W., Bath, M. L., & Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature, 348, 331–333.
    Article PubMed CAS Google Scholar
  93. Letai, A., Sorcinelli, M. D., Beard, C., & Korsmeyer, S. J. (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell, 6, 241–249.
    Article PubMed CAS Google Scholar
  94. Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60, 167–176.
    Article PubMed CAS Google Scholar
  95. Mumby, M. (1995). Regulation by tumour antigens defines a role for PP2A in signal transduction. Seminars in Cancer Biology, 6, 229–237.
    Article PubMed CAS Google Scholar
  96. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75, 887–897.
    Article PubMed CAS Google Scholar
  97. Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22, 2111–2123.
    Article PubMed CAS Google Scholar
  98. Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11, 5–13.
    Article PubMed CAS Google Scholar
  99. Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290, 192–198.
    Article PubMed CAS Google Scholar
  100. Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncology Reports, 11, 655–659.
    PubMed CAS Google Scholar
  101. Kalla, C., Scheuermann, M. O., Kube, I., Schlotter, M., Mertens, D., Dohner, H., et al. (2007). Analysis of 11q22-q23 deletion target genes in B-cell chronic lymphocytic leukaemia: Evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 43, 1328–1335.
    Article PubMed CAS Google Scholar
  102. Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 19, 1191–1195.
    Article PubMed CAS Google Scholar
  103. Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene, 20, 10–15.
    Article PubMed CAS Google Scholar
  104. Yeh, L. S., Hsieh, Y. Y., Chang, J. G., Chang, W. W., Chang, C. C., & Tsai, F. J. (2007). Mutation analysis of the tumor suppressor gene PPP2R1B in human cervical cancer. International Journal of Gynecological Cancer, 17, 868–871.
    Article PubMed Google Scholar
  105. Ruteshouser, E. C., Ashworth, L. K., & Huff, V. (2001). Absence of PPP2R1A mutations in Wilms tumor. Oncogene, 20, 2050–2054.
    Article PubMed CAS Google Scholar
  106. Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93, 798–804.
    Article CAS Google Scholar
  107. Patturajan, M., Nomoto, S., Sommer, M., Fomenkov, A., Hibi, K., Zangen, R., et al. (2002). DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell, 1, 369–379.
    Article PubMed CAS Google Scholar
  108. Martens, E., Stevens, I., Janssens, V., Vermeesch, J., Gotz, J., Goris, J., et al. (2004). Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. Journal of Molecular Biology, 336, 971–986.
    Article PubMed CAS Google Scholar
  109. Salahshor, S., & Woodgett, J. R. (2005). The links between axin and carcinogenesis. Journal of Clinical Pathology, 58, 225–236.
    Article PubMed CAS Google Scholar

Download references