Cystatin C estimated renal dysfunction predicts T wave axis deviation in US adults: results from NHANES III (original) (raw)
Prevalence of chronic kidney disease and associated risk factors–United States, 1999-2004. MMWR Morb Mortal Wkly Rep. 2007;56(8):161–5.
US Renal Data System. USRDS 2004 annual data report. Atlas of end-stage renal disease in the United States. In: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda. Available from URL: http://www.usrds.org/atlas_2004.htm.
Schoolwerth AC, Engelgau MM, Hostetter TH, et al. Chronic kidney disease: a public health problem that needs a public health action plan. Prev Chronic Dis. 2006;3(2):A57. Google Scholar
Grossmann R, Thelemann A, Albert FW, et al. Ventricular cardiac arrhythmia in patients with terminal renal failure and chronic dialysis. Med Klin (Munich). 1988;83(22):735–9. CAS Google Scholar
Switalski M, Kepka A, Galewicz M, et al. Ventricular arrhythmia in patients with chronic renal failure treated with hemodialysis. Pol Arch Med Wewn. 2000;104(4):703–8. CASPubMed Google Scholar
London GM. Cardiovascular disease in chronic renal failure: pathophysiologic aspects. Semin Dial. 2003;16(2):85–94. Google Scholar
Glassock RJ, Pecoits-Filho R. Barberato SH: left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S79–91. ArticlePubMed Google Scholar
Reis SE, Olson MB, Fried L, et al. Mild renal insufficiency is associated with angiographic coronary artery disease in women. Circulation. 2002;105(24):2826–9. ArticlePubMed Google Scholar
Josephs W, Odenthal HJ. Cardiac manifestations of terminal kidney insufficiency. Current characterization of uremic cardiomyopathy. Dtsch Med Wochenschr. 1995;120(5):141–4. ArticleCASPubMed Google Scholar
Cardoso C, Salles G. QT-interval parameters in end-stage renal disease–is cardiovascular autonomic neuropathy unimportant? Clin Auton Res. 2004;14(4):214–6. ArticlePubMed Google Scholar
Faramawi MF, Sall M, Abdul Kareem MY. The association of the metabolic syndrome with T-wave axis deviation in NHANES III. Ann Epidemiol. 2008;18(9):702–7. ArticlePubMed Google Scholar
Zabel M, Malik M, Hnatkova K, et al. Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation. 2002;105(9):1066–70. ArticlePubMed Google Scholar
Alagiakrishnan K, Beitel JD, Graham MM, et al. Relation of T-axis abnormalities to coronary artery disease and survival after cardiac catheterization. Am J Cardiol. 2005;96(5):639–42. ArticlePubMed Google Scholar
de Torbal A, Kors JA, van Herpen G, et al. The electrical T-axis and the spatial QRS-T angle are independent predictors of long-term mortality in patients admitted with acute ischemic chest pain. Cardiology. 2004;101(4):199–207. ArticlePubMed Google Scholar
Kors JA, de Bruyne MC, Hoes AW, et al. T axis as an indicator of risk of cardiac events in elderly people. Lancet. 1998;352(9128):601–5. ArticleCASPubMed Google Scholar
Rautaharju PM, Nelson JC, Kronmal RA, et al. Usefulness of T-axis deviation as an independent risk indicator for incident cardiac events in older men and women free from coronary heart disease (the Cardiovascular Health Study). Am J Cardiol. 2001;88(2):118–23. ArticleCASPubMed Google Scholar
Shlipak MG, Katz R, Sarnak MJ, et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann Intern Med. 2006;145(4):237–46. CASPubMed Google Scholar
Selvin E, Manzi J, Stevens LA, et al. Calibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988–1994, 1999–2004. Am J Kidney Dis. 2007;50(6):918–26. ArticleCASPubMed Google Scholar
Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3, 418 individuals with CKD. Am J Kidney Dis. 2008;51(3):395–406. ArticleCASPubMed Google Scholar
Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54. CASPubMed Google Scholar
Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Int. Med. 2003;139(2):137–47. PubMed Google Scholar
Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6. ArticleCASPubMed Google Scholar
Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem. 2002;48(5):699–707. CASPubMed Google Scholar
Reese PP, Feldman HI. More evidence that cystatin C predicts mortality better than creatinine. J Am Soc Nephrol. 2009;20(10):2088–90. ArticleCASPubMed Google Scholar
Keller T, Messow CM, Lubos E, et al. Cystatin C and cardiovascular mortality in patients with coronary artery disease and normal or mildly reduced kidney function: results from the AtheroGene study. Eur Heart J. 2009;30(3):314–20. ArticleCASPubMed Google Scholar
Shlipak MG, Wassel Fyr CL, Chertow GM, et al. Cystatin C and mortality risk in the elderly: the health, aging, and body composition study. J Am Soc Nephrol. 2006;17(1):254–61. ArticleCASPubMed Google Scholar
Astor BC, Levey AS, Stevens LA, et al. Method of glomerular filtration rate estimation affects prediction of mortality risk. J Am Soc Nephrol. 2009;20(10):2214–22. ArticlePubMed Google Scholar
Ikizler TA. Epidemiology of vascular disease in renal failure. Blood Purif 2002;20(1):6–10. Google Scholar
Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26. Google Scholar
Covic A, Diaconita M, Gusbeth-Tatomir P, et al. Haemodialysis increases QT(c) interval but not QT(c) dispersion in ESRD patients without manifest cardiac disease. Nephrol Dial Transplant. 2002;17(12):2170–7. ArticleCASPubMed Google Scholar
Howse M, Sastry S, Bell GM. Changes in the corrected QT interval and corrected QT dispersion during haemodialysis. Postgrad Med J. 2002;78(919):273–5. ArticleCASPubMed Google Scholar
Kirvela M, Yli-Hankala A, Lindgren L. QT dispersion and autonomic function in diabetic and non-diabetic patients with renal failure. Br J Anaesth. 1994;73(6):801–4. ArticleCASPubMed Google Scholar
Lorincz I, Matyus J, Zilahi Z, et al. QT dispersion in patients with end-stage renal failure and during hemodialysis. J Am Soc Nephrol. 1999;10(6):1297–302. CASPubMed Google Scholar
Stewart GA, Gansevoort RT, Mark PB, et al. Electrocardiographic abnormalities and uremic cardiomyopathy. Kidney Int. 2005;67(1):217–26. ArticlePubMed Google Scholar
Malik M, Batchvarov VN. Measurement, interpretation and clinical potential of QT dispersion. J Am Coll Cardiol. 2000;36(6):1749–66. ArticleCASPubMed Google Scholar
Salles GF, Xavier SS, Sousa AS, et al. T-wave axis deviation as an independent predictor of mortality in chronic Chagas’ disease. Am J Cardiol. 2004;93(9):1136–40. ArticlePubMed Google Scholar
Haapanen N, Miilunpalo S, Pasanen M, et al. Agreement between questionnaire data and medical records of chronic diseases in middle-aged and elderly Finnish men and women. Am J Epidemiol. 1997;145(8):762–9. CASPubMed Google Scholar
Tretli S, Lund-Larsen PG, Foss OP. Reliability of questionnaire information on cardiovascular disease and diabetes: cardiovascular disease study in Finnmark county. J Epidemiol Community Health. 1982;36(4):269–73. ArticleCASPubMed Google Scholar