Multifaceted Role of Rho Proteins in Angiogenesis (original) (raw)
Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175:409–16. PubMedCAS Google Scholar
Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999;9:211–20. PubMedCAS Google Scholar
Takahashi A, Sasaki H, Kim SJ, Tobisu K, Kakizoe T, Tsukamoto T, Kumamoto Y, Sugimura T, Terada M. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 1994;54:4233–7. PubMedCAS Google Scholar
Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res 1994;54:276–80. PubMedCAS Google Scholar
13 Du JR, Jiang Y, Zhang YM, Fu H. Vascular endothelial growth factor and microvascular density in esophageal and gastric carcinomas. World J Gastroenterol 2003;9:1604–6. PubMedCAS Google Scholar
Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992;359:845–8. PubMedCAS Google Scholar
Gleadle JM, Ratcliffe PJ. Hypoxia and the regulation of gene expression. Mol Med Today 1998;4:122–9. PubMedCAS Google Scholar
Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15: 551–78. PubMedCAS Google Scholar
Turcotte S, Desrosiers RR, Beliveau R. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 2003; 116(Pt 11): 2247–60, Jun 1. PubMedCAS Google Scholar
Hirota K, Semenza GL. Rac1 activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem 2001;276(24):21166–72, Jun 15. PubMedCAS Google Scholar
Xue Y, Bi F, Liu WC, Pan YL, Han ZY, Liu N, et al. Expressions and activities of Rho GTPases in hypoxia and its relationship with tumor angiogenesis. Zhonghua Zhong Liu Za Zhi 2004;26(9):517–20, Sep, Chinese. CAS Google Scholar
van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2000;2(5):418–25, Sep–Oct. PubMed Google Scholar
Wu M, Wu ZF, Kumar-Sinha C, Chinnaiyan A, Merajver SD. RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells. Breast Cancer Res Treat 2004;84(1):3–12, Mar. PubMedCAS Google Scholar
van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 2003;23(2):211–7, Feb 1. PubMed Google Scholar
Gingras D, Lamy S, Beliveau R. Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins. Biochem J 2000;348(Pt 2):273–80, Jun 1. PubMedCAS Google Scholar
Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G11995. Science, 269:1270–2.
Yamamoto M, Marui N, Sakai T, Morii N, Kozaki S, Ikai K, Imamura S, Narumiya S. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 1993; 8:1449–55. PubMedCAS Google Scholar
Liberto M, Cobrinik D, Minden A. Rho regulates p21(CIP1), cyclin D1, and checkpoint control in mammary epithelial cells. Oncogene 2002;21(10):1590–9, Feb 28. PubMedCAS Google Scholar
Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. BioEssays 2000;22:818–26. PubMedCAS Google Scholar
Villalonga P, Guasch RM, Riento K, Ridley, AJ. RhoE inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol 2004;24:7829–40. PubMedCAS Google Scholar
Roovers K, Assoian RK. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases. Mol Cell Biol 2003;23:4283–94. PubMedCAS Google Scholar
Olson MF, Paterson HF. Marshall CJ. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 1998;394:295–8. PubMedCAS Google Scholar
Weber JD, Hu W, Jefcoat SC, Raben DM, Baldassare JJ. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27Kip1. J Biol Chem 1997;272:32966–71. PubMedCAS Google Scholar
Westwick JK, Lambert QT, Clark GJ, et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol Cell Biol 1997;17:1324–35. PubMedCAS Google Scholar
Page K, Li J, Hodge JA, Liu PT, Vanden Hoek TL, Becker, et al. Characterization of a Rac1 signaling pathway to cyclin D(1) expression in airway smooth muscle cells. J Biol Chem 1999;274:22065–71. PubMedCAS Google Scholar
Joyce D, Bouzahzah B, Fu M, Albanese C, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem 1999; 274:25245–9. PubMedCAS Google Scholar
Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 2001;3:950–7. PubMedCAS Google Scholar
Hirano T, Akira S, Taga T, Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol Today 1990;11(12):443–9, Dec. PubMedCAS Google Scholar
Mateo RB, Reichner JS, Albina JE. Interleukin-6 activity in wounds. Am J Physiol 1994;266(6 Pt 2):R1840–4, Jun. PubMedCAS Google Scholar
Yan SF, Tritto I, Pinsky D, Liao H, Huang J, Fuller G, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem 1995;270(19):11463–71, May 12. PubMedCAS Google Scholar
Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 2005;11(9): 992–7, Sep. PubMedCAS Google Scholar
Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996;271(2):736–41, Jan 12. PubMedCAS Google Scholar
Mukaida N, Matsumoto T, Yokoi K, Harada A, Matsushima K. Inhibition of neutrophil-mediated acute inflammation injury by an antibody against interleukin-8 (IL-8). Inflamm Res 1998; 47:151. Google Scholar
Munoz C, Pascual-Salcedo D, Castellanos MC, et al. Pyrrolidine dithiocarbamate inhibits the production of interleukin-6, interleukin-8, and granulocyte-macrophage colony-stimulating factor by human endothelial cells in response to inflammatory mediators: modulation of NF-kB and AP-1 transcription factors activity. Blood 1996;88:3480. Google Scholar
Montaner S, Perona R, Saniger L, Lacal JC. Multiple signalling pathways lead to the activation of the nuclear factor-kB by the Rho family of GTPases. J Biol Chem 1998;273:12,779. CAS Google Scholar
Perona R, Montaner S, Saniger S, Sa´nchez-Pe´rez I, Bravo R, Lacal, JC. Activation of the nuclear factor-kB by Rho, CDC42, and Rac-1 proteins. Genes Dev 1997;11:463. PubMedCAS Google Scholar
Ito T, Ikeda U, Shimpo M, Ohki R, Takahashi M, Yamamoto K, et al. HMG-CoA reductase inhibitors reduce interleukin-6 synthesis in human vascular smooth muscle cells. Cardiovasc Drugs Ther 2002;16(2):121–6, Mar. PubMedCAS Google Scholar
Seabra MC. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 1998;10(3):167–72, Mar. PubMedCAS Google Scholar
Guijarro C, Blanco-Colio LM, Ortego M, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 1998;83:490–500. PubMedCAS Google Scholar
Guijarro C, Blanco-Colio LM, Massy ZA, et al. Lipophilic statins induce apoptosis of human vascular smooth muscle cells. Kidney Int 1999;71:S88–91. CAS Google Scholar
Vincent L, Chen W, Hong L, Mirshahi F, Mishal Z, Mirshahi-Khorassani T, et al. Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect. FEBS Lett 2001;495(3):159–66, Apr 27. PubMedCAS Google Scholar
Faruqi TR, Gomez D, Bustelo XR, Bar-Sagi D, Reich NC. Rac1 mediates STAT3 activation by autocrine IL-6. Proc Natl Acad Sci USA 2001;98(16):9014–9, Jul 31. PubMedCAS Google Scholar
Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S, et al. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J Clin Invest 2000;105(8):1147–56, Apr. ArticlePubMedCAS Google Scholar
Hippenstiel S, Soeth S, Kellas B, Fuhrmann O, Seybold J, Krull M, et al. Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 2000;95(10):3044–51, May 15. PubMedCAS Google Scholar
Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res 1992;59:115–65. ArticlePubMedCAS Google Scholar
Payson RA, Chotani MA, Chiu IM. Regulation of a promoter of the fibroblast growth factor 1 gene in prostate and breast cancer cells. J Steroid Biochem Mol Biol 1998;66(3):93–103, Aug. PubMedCAS Google Scholar
Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 1994;86:356–61. PubMedCAS Google Scholar
Chotani MA, Touhalisky K, Chiu IM. The small GTPases Ras, Rac, and Cdc42 transcriptionally regulate expression of human fibroblast growth factor 1. J Biol Chem 2000;275(39):30432–8, Sep 29. PubMedCAS Google Scholar
Liu JF, et al. Functional Rac-1 and Nck signaling networks are required for FGF-2-induced DNA synthesis in MCF-7 cells. Oncogene 1999;18(47):6425–33, Nov 11. PubMedCAS Google Scholar
Jackson TA, Koterwas DM, Morgan MA, Bradford AP. Fibroblast growth factors regulate prolactin transcription via an atypical Rac-dependent signaling pathway. Mol Endocrinol 2003;17(10):1921–30, Oct. PubMedCAS Google Scholar
Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA.Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003;3(3):219–31, Mar. PubMedCAS Google Scholar
Schwartz MA, Shattil SJ. Signaling networks linking integrins and rho family GTPases. Trends Biochem Sci 2000;25(8):388–91, Aug. PubMedCAS Google Scholar
Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996;12:463–518. PubMedCAS Google Scholar
del Pozo MA, Price LS, Alderson NB, Ren XD, Schwartz MA. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 2000;19(9): 2008–14, May 2. PubMed Google Scholar
Price LS, Leng J, Schwartz MA, Bokoch GM. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 1998;9(7):1863–71, Jul. PubMedCAS Google Scholar
20 Yron I, et al. Integrin-dependent tyrosine phosphorylation and growth regulation by Vav. Cell Adhes Commun 1999;7:1–11. PubMedCAS Google Scholar
Cichowski K, et al. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J Biol Chem 1996; 271:7544–750. PubMedCAS Google Scholar
Gotoh A, et al. Cross-linking of integrins induces tyrosine phosphorylation of the proto-oncogene product Vav and the protein tyrosine kinase Syk in human factor dependent myeloid cells. Cell Growth Differ 1997;6:721–9. Google Scholar
Miranti CK, et al. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol 1998;8:1289–99. PubMedCAS Google Scholar
Ren XD, Kiosses WB, Schwartz MA. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 1999;18(3):578–85, Feb 1. PubMedCAS Google Scholar
Miao H, Li S, Hu YL, Yuan S, Zhao Y, Chen BP, et al. Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 2002;115(Pt 10):2199–206, May 15. PubMedCAS Google Scholar
Butler B, Williams MP, Blystone SD. Ligand-dependent activation of integrin alpha vbeta 3. J Biol Chem 2003;278(7):5264–70, Feb 4. PubMedCAS Google Scholar
Danen EH, Sonneveld P, Brakebusch C, Fassler R, Sonnenberg A. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 2002;159(6):1071–86, Dec 23. PubMedCAS Google Scholar
Danen EH, van Rheenen J, Franken W, Huveneers S, Sonneveld P, Jalink K, Sonnenberg A. Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol 2005;169(3):515–26, May 9. PubMedCAS Google Scholar
Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003;5(8):711–9, Aug. PubMedCAS Google Scholar
Dolfi F, et al. The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway. Proc Natl Acad Sci USA 1998;95:15394–9. PubMedCAS Google Scholar
Clark EA, et al. Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 1998;142:573–86. PubMedCAS Google Scholar
Yang W, et al. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin beta1. J Biol Chem 1999;274:8524–30. PubMedCAS Google Scholar
Barry ST, et al. Requirement for Rho in integrin signalling. Cell Adhes Commun 1997;4:387–98. PubMedCAS Google Scholar
Renshaw MW, et al. Involvement of the small GTPase rho in integrin-mediated activation of mitogen activated protein kinase. J Biol Chem 1996;271:21691–4. PubMedCAS Google Scholar
Chong LD, et al. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994;79:507–13. PubMedCAS Google Scholar
Cary LA, et al. Integrin-mediated signal transduction pathways. Histol. Histopathol 1999;14:1001–9. PubMedCAS Google Scholar
Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285: 1028–32. PubMedCAS Google Scholar
Kiosses WB, Shattil SJ, Pampori N, Schwartz MA. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 2001;3(3):316–20, Mar. PubMedCAS Google Scholar
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–57. PubMedCAS Google Scholar
Ridley AJ. Rho GTPases and cell migration. J Cell Sci 2001;114(Pt 15):2713–22, Aug. PubMedCAS Google Scholar
Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 2000;29:545–76. PubMedCAS Google Scholar
Allen WE, Zicha D, Ridley AJ, Jones GE. A role for Cdc42 in macrophage chemotaxis. J Cell Biol 1998;141(5):1147–57, Jun 1. PubMedCAS Google Scholar
Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 1999;144(6):1235–44, Mar 22. PubMedCAS Google Scholar
Miki H, et al. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 2000;408:732–5. PubMedCAS Google Scholar
Govind S, Kozma R, Monfries C, Lim L, Ahmed S. Cdc42hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 2001;152:579–94. PubMedCAS Google Scholar
Hall A, Rho GTPases and the actin cytoskeleton. Science 1998;279(5350):509–14, Jan 23. PubMedCAS Google Scholar
Carpenter CL, Tolias KF, Van Vugt A, Hartwig J. Lipid kinases are novel effectors of the GTPase Rac1. Adv Enzyme Regul 1999;39:299–312. PubMedCAS Google Scholar
Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL. Type I alpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 2000;10:153–6. PubMedCAS Google Scholar
Stanyon CA, Bernard O. LIM-kinase1. Int. J Biochem Cell Biol 1999;31:389–94. PubMedCAS Google Scholar
Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling toactin cytoskeletal dynamics. Nat Cell Biol 1999;1:253–9. PubMedCAS Google Scholar
van Leeuwen FN, van Delft S, Kain HE, van der Kammen RA, Collard JG. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1999;1:242–8. PubMed Google Scholar
Daniels RH, Bokoch GM. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem Sci 1999;24:350–5. PubMedCAS Google Scholar
Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996;84:359–69. PubMedCAS Google Scholar
Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995;81:53–62. PubMedCAS Google Scholar
Allen WE, Jones GE, Pollard JW, Ridley AJ. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 1997;110:707–20. PubMedCAS Google Scholar
Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. Regulation of cadherin-mediated cell–cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 1999;11(5):591–6, Oct. PubMedCAS Google Scholar
Cox EA, Huttenlocher A. Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech 1998;3:412–9. Google Scholar
Kirchhausen T, et al. Disease mechanism: unravelling Wiskott–Aldrich syndrome. Curr Biol 1996;6:676–8. PubMedCAS Google Scholar
Davis GE, Camarillo C. An a2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 1996;224:39–51. PubMedCAS Google Scholar
Bayless KJ, Salazar R, Davis GE. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 2000;156(5):1673–83, May. PubMedCAS Google Scholar
Davis GE, Black SM, Bayless KJ. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev Biol 2000;36:513–9. CAS Google Scholar
Liu BP, Chrzanowska-Wodnicka M, Burridge K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes Commun 1998;5:249–55. ArticlePubMedCAS Google Scholar
Inada H, Togashi H, Nakamura Y, Kaibuchi K, Nagata K, Inagaki M. Balance between activities of Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J Biol Chem 1999; 274:34932–9. PubMedCAS Google Scholar
Goode BL, Drubin DG, Barnes F. Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 2000;12:63–71. PubMedCAS Google Scholar
Meriane M, Mary S, Comunale F, Vifnal E, Fort P, Gauthier-Rouviere C. Cdc42Hs and Rac1 GTPases induce collapse of the vimentin intermediate filament network. J Biol Chem 2000; 275:33046–52. PubMedCAS Google Scholar
Tian L, Nelson DL, Stewart DM. Cdc42-interacting protein 4 mediates binding of the Wiskott–Aldrich syndrome protein to microtubules. J Biol Chem 2000;275:7854–61. PubMedCAS Google Scholar
Daub H, Gavaert K, Vandekerchkhove J, Sobel A, Hall A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation and serine 16. J Biol Chem 2001;276:1677–80. PubMedCAS Google Scholar
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992;70:401–10. PubMedCAS Google Scholar
Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 1998;282(5394):1717–21, Nov 27. PubMedCAS Google Scholar
Chimini G, Chavrier P. Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2000;2(10):E191–6, Oct. PubMedCAS Google Scholar
Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 2000;102(3):325–34, Aug 4. PubMedCAS Google Scholar
Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 2000;269:652–9. PubMedCAS Google Scholar
Bayless KJ, Davis GE. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 2002;115(Pt 6):1123–36, Mar 15. PubMedCAS Google Scholar
Davis GE, Bayless KJ. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 2003;10(1):27–44, Jan. ArticlePubMedCAS Google Scholar