osa-MIR393: a salinity- and alkaline stress-related microRNA gene (original) (raw)

Abstract

Salinity and alkalinity are the two main environmental factors that limit rice production. Better understanding of the mechanisms responsible for salinity and alkaline stress tolerance would allow researchers to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are ~21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. Some miRNAs acts as an important endogenous regulator in plant responses to abiotic stressors. miR393 is a conservative miRNA family that occurs in a variety of different plants. The two members of the miR393 family found in rice are named _osa_-MIR393 and _osa_-MIR393b. We found that the _osa_-MIR393 expression level changed under salinity and alkaline stress, whereas that of _osa_-MIR393b did not. Target genes of _osa_-MIR393 were predicted, and some of these putative targets are abiotic related genes. Furthermore, we generated transgenic rice and Arabidopsis thaliana that over-expressed _osa_-MIR393, and the phenotype analysis showed that these transgenic plants were more sensitive to salt and alkali treatment compared to wild-type plants. These results illustrate that over-expression of _osa_-MIR393 can negatively regulate rice salt-alkali stress tolerance.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

GRF:

Growth-regulating factor

GIF:

GRF-interacting factor

MS medium:

Murashige and Skoog medium

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription PCR

pre-miRNA:

miRNA precursor

GFP:

Green fluorescent protein

RACE:

Rapid-amplification of cDNA ends

References

  1. Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717
    Article CAS PubMed Google Scholar
  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
    Article CAS PubMed Google Scholar
  3. Lai EC (2003) MicroRNAs: runts of the genome assert themselves. Curr Biol 13:R925–R936
    Article CAS PubMed Google Scholar
  4. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet Suppl 38:S31–S36
    Article CAS Google Scholar
  5. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019
    Article CAS PubMed Google Scholar
  6. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799
    Article CAS PubMed Google Scholar
  7. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354(2):585–590
    Article CAS PubMed Google Scholar
  8. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. IRRI, Los Banos
    Google Scholar
  9. Chakrabarty R, Banerjee R, Chung SM, Farman M, Citovsky V, Hogenhout SA, Tzfira T, Goodin M (2007) pSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing _Nicotiana benthamiana_-virus interactions. Mol Plant Microbe Interact 20:740–750
    Article CAS PubMed Google Scholar
  10. Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553
    Article CAS PubMed Google Scholar
  11. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
    Article CAS PubMed Google Scholar
  12. Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16–21
    Article CAS Google Scholar
  13. Huang J, Zhang H, Wang J, Yang J (2003) Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol Biol Rep 30(4):223–227
    Article CAS PubMed Google Scholar
  14. Yang W, Liu X, Zhang J, Feng J, Li C, Chen J (2009) Prediction and validation of conservative microRNAs of Solanum tuberosum L. Mol Biol Rep. doi:10.1007/s11033-009-9881-z
  15. Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37(2):1119–1124
    Article CAS PubMed Google Scholar
  16. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309
    Article CAS PubMed Google Scholar
  17. Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597
    Article CAS PubMed Google Scholar
  18. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37
    Article PubMed Google Scholar
  19. Liu HH, Tian X, Li YJ et al (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843
    Article CAS PubMed Google Scholar
  20. Liu C, Zhang L, Sun J, Luo Y, Wang MB, Fan YL, Wang L (2010) A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol Biol Rep 37:903–909
    Article CAS PubMed Google Scholar

Download references

Acknowledgments

This project was supported by a grant from the Key Research Plan of Heilongjiang Province (GA06B103-3), the Innovation Research Group of NEAU (CXT004), the “863” project (2008AA10Z153), and the Basic Research Preliminary Study Foundation of the Ministry of Science and Technology of the PRC (2003CCA03500).

Author information

Authors and Affiliations

  1. Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, 150030, China
    Peng Gao, Xi Bai, Liang Yang, Dekang Lv, Xin Pan, Yong Li, Hua Cai, Wei Ji & Yanming Zhu
  2. Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave, South P.O. Box 3000, Lethbridge, AB, T1J 4B1, Canada
    Qin Chen

Authors

  1. Peng Gao
    You can also search for this author inPubMed Google Scholar
  2. Xi Bai
    You can also search for this author inPubMed Google Scholar
  3. Liang Yang
    You can also search for this author inPubMed Google Scholar
  4. Dekang Lv
    You can also search for this author inPubMed Google Scholar
  5. Xin Pan
    You can also search for this author inPubMed Google Scholar
  6. Yong Li
    You can also search for this author inPubMed Google Scholar
  7. Hua Cai
    You can also search for this author inPubMed Google Scholar
  8. Wei Ji
    You can also search for this author inPubMed Google Scholar
  9. Qin Chen
    You can also search for this author inPubMed Google Scholar
  10. Yanming Zhu
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYanming Zhu.

Additional information

Peng Gao and Xi Bai contributed equally to this work.

Electronic supplementary material

Rights and permissions

About this article

Cite this article

Gao, P., Bai, X., Yang, L. et al. _osa_-MIR393: a salinity- and alkaline stress-related microRNA gene.Mol Biol Rep 38, 237–242 (2011). https://doi.org/10.1007/s11033-010-0100-8

Download citation

Keywords