Pharmacodynamic Assessment of the Benztropine Analogues AHN-1055 and AHN-2005 Using Intracerebral Microdialysis to Evaluate Brain Dopamine Levels and Pharmacokinetic/Pharmacodynamic Modeling (original) (raw)

No Heading

Purpose.

The benztropine (BZT) analogues bind with high affinity to the dopamine transporter (DAT) and demonstrate a behavioral and pharmacokinetic profile unlike that of cocaine. The development of a predictive pharmacokinetic/pharmacodynamic (PK/PD) model to characterize the concentration-effect relationship between the BZT analogues and brain dopamine (DA) levels is an important step in the evaluation of these compounds as potential cocaine abuse pharmacotherapies. Hence, the objective of this study was to mathematically characterize the PD of BZT analogues and cocaine, using appropriate PK/PD models.

Methods.

Dialysis probes were stereotaxically implanted into the nucleus accumbens of Sprague-Dawley rats (275–300 g). Extracellular fluid (ECF) DA levels were measured after intravenous administration of the BZT analogues AHN-1055 and AHN-2005, as well as cocaine using high performance liquid chromatography-electrochemical detection (HPLC-ECD). PD models were used to describe the relationship between the BZT analogues or cocaine and brain microdialysate DA, and suitability was based on standard goodness-of-fit criteria.

Results.

The BZT analogues produced a sustained increase in brain microdialysate DA levels in comparison to cocaine. The time of maximum concentration (Tmax) for brain microdialysate DA was 2 h for AHN-1055 and 1 h for AHN-2005 compared to a Tmax of 10 min for cocaine. The duration of brain microdialysate DA elevation was ∼12–24 h for the BZTs in comparison to 1 h for cocaine. An indirect model with inhibition of loss of response and a sigmoid Emax model best described the PK/PD for the BZT analogues and cocaine, respectively. The 50% of maximum inhibition (IC50) of the loss of DA was lower for AHN-2005 (226 ± 27.5 ng/ml) compared to AHN-1055 (321 ± 19.7 ng/ml). In addition, the EC50 for cocaine was 215 ± 11.2 ng/ml.

Conclusions.

The slow onset and long duration of BZT analogue–induced DA elevation may avoid the reinforcing effects and craving of cocaine. Further, the developed models will be useful in characterizing the PK/PD of other analogues and aid in the assessment of the therapeutic efficacy of the BZT analogues as substitute medications for cocaine abuse.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. D. A. Gorelick. The rate hypothesis and agonist substitution approaches to cocaine abuse treatment. Adv. Pharmacol. 42:995–997 (1998).
    CAS PubMed Google Scholar
  2. 2. L. L. Howell and K. M. Wilcox. The dopamine transporter and cocaine medication development: drug self-administration in nonhuman primates. J. Pharmacol. Exp. Ther. 298:1–6 (2001).
    CAS PubMed Google Scholar
  3. 3. A. H. Newman, A. C. Allen, S. Izenwasser, and J. L. Katz. Novel 3α-(diphenylmethoxy) tropane analogs: potent dopamine uptake inhibitors without cocaine-like behavioral profiles. J. Med. Chem. 37:2258–2261 (1994).
    Article CAS PubMed Google Scholar
  4. 4. A. H. Newman, R. H. Kline, A. C. Allen, S. Izenwasser, C. George, and J. L. Katz. Novel 4′-substituted and 4′,4″-disubstituted 3α-(diphenylmethoxy) tropane analogs as potent and selective dopamine uptake inhibitors. J. Med. Chem. 38:3933–3940 (1995).
    Article CAS PubMed Google Scholar
  5. 5. A. H. Newman. Novel dopamine transporter ligands: the state of the art. Med. Chem. Res. 8:1–11 (1998).
    CAS Google Scholar
  6. 6. J. L. Katz, S. Izenwasser, R. H. Kline, A. C. Allen, and A. H. Newman. Novel 3α-diphenylmethoxytropane analogs: selective dopamine uptake inhibitors with behavioral effects distinct from those of cocaine. J. Pharmacol. Exp. Ther. 288:302–315 (1999).
    CAS PubMed Google Scholar
  7. 7. A. H. Newman and S. S. Kulkarni. Probes for the dopamine transporter: new leads toward a cocaine-abuse therapeutic—a focus on analogues of benztropine and rimcazole. Med. Res. Rev. 22:1–36 (2002).
    Article PubMed Google Scholar
  8. 8. G. E. Agoston, J. H. Wu, S. Izenwasser, C. George, J. L. Katz, R. H. Kline, and A. H. Newman. Novel N-substituted-3a(bis (4′-fluorophenyl methoxy)) tropane analogues: selective ligands for the dopamine transporter. J. Med. Chem. 40:4329–4339 (1997).
    Article CAS PubMed Google Scholar
  9. 9. M. J. Robarge, G. E. Agoston, S. Izenwasser, T. Kopajtic, C. George, J. L. Katz, and A. H. Newman. Highly selective chiral N-substituted 3alpha-(bis(4′-fluorophenyl)methoxy)tropane analogues for the dopamine transporter: synthesis and comparative molecular field analysis. J. Med. Chem. 43:1085–1093 (2000).
    Article CAS PubMed Google Scholar
  10. 10. S. Raje, J. Cao, A. H. Newman, H. Gao, and N. D. Eddington. Evaluation of the blood brain barrier transport, population pharmacokinetics and brain distribution of benztropine analogs and cocaine using in vitro and in vivo techniques. J. Pharmacol. Exp. Ther. 307:801–808 (2003).
    Article CAS PubMed Google Scholar
  11. 11. J. Dingemanse, M. Danhof, and D. D. Breimer. Pharmacokinetic-pharmacodynamic modeling of CNS drug effects: an overview. Pharmacol. Ther. 38:1–52 (1988).
    Article CAS PubMed Google Scholar
  12. 12. D. Jolly and P. Vezina. In vivo microdialysis in the rat: low cost and low labor construction of a small diameter, removable, concentric-style microdialysis probe system. J. Neurosci. Methods 68:259–267 (1996).
    Article CAS PubMed Google Scholar
  13. 13. G. Paxinos and C. Watson. The Rat Brain in Stereotaxic Coordinates, 4th ed., Academic Press, Orlando (1998).
    Google Scholar
  14. 14. Z. You, Y. Chen, and R. A. Wise. Dopamine and glutamate release in the nucleus accumbens and ventral tegmental area of rat following lateral hypothalamic self-stimulation. Neuroscience 107:629–639 (2001).
    Article CAS PubMed Google Scholar
  15. 15. Y. L. Hurd, J. Kehr, and U. Ungerstedt. In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J. Neurochem. 51:1314–1316 (1998).
    Google Scholar
  16. 16. N. L. Dyaneka, V. Garg, and W. J. Jusko. Comparison of four baic models of indirect pharmacodynamic responses. J. Pharmacokin Biopharm. 24:457–478 (1993).
    Article Google Scholar
  17. 17. W. J. Pan and M. A. Hedaya. An animal model for simultaneous pharmacokinetic/pharmacodynamic investigations: application to cocaine. J. Pharmacol. Toxicol. Methods 39:1–8 (1998).
    Article CAS PubMed Google Scholar
  18. 18. P. W. Czoty, J. B. Justice Jr., and L. L. Howell. Cocaine-induced changes in extracellular dopamine determined by microdialysis in awake squirrel monkeys. Psychopharmacology (Berl.) 148:299–306 (2000).
    Article CAS Google Scholar
  19. 19. P. W. Kalivas and P. Duffy. Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58 (1990).
    Article CAS PubMed Google Scholar
  20. 20. H. Tsukada, N. Harada, S. Nishiyama, H. Ohba, and T. Kakiuchi. Cholinergic neuronal modulation alters dopamine D2 receptor availability in vivo by regulating receptor affinity induced by facilitated synaptic dopamine turnover: positron emission tomography studies with microdialysis in the conscious monkey brain. J. Neurosci. 20:7067–7073 (2000).
    CAS Google Scholar
  21. 21. R. B. Rothman. High affinity dopamine reuptake inhibitors as potential cocaine antagonists: a strategy for drug development. Life Sci. 46:PL17–PL21 (1990).
    Article CAS PubMed Google Scholar
  22. 22. R. B. Rothman, A. Mele, A. A. Reid, H. C. Akunne, N. Greig, A. Thurkauf, B. R. De Costa, K. C. Rice, and A. Pert. GBR12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacol. Biochem. Behav. 40:387–397 (1991).
    Article CAS PubMed Google Scholar
  23. 23. B. K. Tolliver, A. H. Newman, J. L. Katz, L. B. Ho, L. M. Fox, K. Hsu Jr., and S. P. Berger. Behavioral and neurochemical effects of the dopamine transporter ligand 4-chlorobenztropine alone and in combination with cocaine in vivo. J. Pharmacol. Exp. Ther. 289:110–122 (1999).
    CAS PubMed Google Scholar
  24. 24. A. Hutchaleelaha, J. Sukbuntherng, and M. Mayersohn. Simple apparatus for serial blood sampling in rodents permitting simultaneous measurement of locomotor activity as illustrated with cocaine. J. Pharmacol. Toxicol. Methods 37:9–14 (1997).
    Article CAS PubMed Google Scholar
  25. 25. P. W. Kalivas and C. D. Barnes. Limbic Motor Circuits and Neuropsychiatry, CRC Press, Boca Raton (1993).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Pharmacokinetics Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
    Sangeeta Raje & Natalie D. Eddington
  2. Psychobiology Section, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, Baltimore, Maryland, 21224, USA
    Jennifer Cornish & Jonathan L. Katz
  3. Medicinal Chemistry Section, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, Baltimore, Maryland, 21224, USA
    Amy H. Newman & Jianjing Cao

Authors

  1. Sangeeta Raje
    You can also search for this author inPubMed Google Scholar
  2. Jennifer Cornish
    You can also search for this author inPubMed Google Scholar
  3. Amy H. Newman
    You can also search for this author inPubMed Google Scholar
  4. Jianjing Cao
    You can also search for this author inPubMed Google Scholar
  5. Jonathan L. Katz
    You can also search for this author inPubMed Google Scholar
  6. Natalie D. Eddington
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toNatalie D. Eddington.

Rights and permissions

About this article

Cite this article

Raje, S., Cornish, J., Newman, A. et al. Pharmacodynamic Assessment of the Benztropine Analogues AHN-1055 and AHN-2005 Using Intracerebral Microdialysis to Evaluate Brain Dopamine Levels and Pharmacokinetic/Pharmacodynamic Modeling.Pharm Res 22, 603–612 (2005). https://doi.org/10.1007/s11095-005-2488-8

Download citation

Key words: