Modulation of Tumor Necrosis Factor-mediated Cell Death by Fullerenes (original) (raw)
References
S. Bosi, T. Da Ros, G. Spalluto, and M. Prato. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem38:913–923 (2003). ArticlePubMedCAS Google Scholar
L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K. Shen, T. Y. Luh, D. W. Choi, and T. S. Lin. Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. U S A94:9434–9439 (1997). ArticlePubMedCAS Google Scholar
L. L. Dugan, E. G. Lovett, K. L. Quick, J. Lotharius, T. T. Lin, K. L. O, and Malley. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord7:243–246 (2001). ArticlePubMed Google Scholar
C. Fumelli, A. Marconi, S. Salvioli, E. Straface, W. Malorni, A. M. Offidani, R. Pellicciari, G. Schettini, A. Giannetti, D. Monti, C. Franceschi, and C. Pincelli. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol115:835–841 (2000). ArticlePubMedCAS Google Scholar
J. Lotharius, L. L. Dugan, K. L. O’Malley. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci19:1284–1293 (1999). PubMedCAS Google Scholar
E. Straface, B. Natalini, D. Monti, C. Franceschi, G. Schettini, M. Bisaglia, C. Fumelli, C. Pincelli, R. Pellicciari, and W. Malorni. C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett454:335–340 (1999). ArticlePubMedCAS Google Scholar
L. L. Dugan, J. K. Gabrielsen, S. P. Yu, T. S. Lin, and D. W. Choi. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis3:129–135 (1996). ArticlePubMedCAS Google Scholar
H. Jin, W. Q. Chen, X. W. Tang, L. Y. Chiang, C. Y. Yang, J. V. Schloss, and J. Y. Wu. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J. Neurosci. Res62:600–607 (2000). ArticlePubMedCAS Google Scholar
C. M. Sayes, J. D. Fortner, W. Guo, D. Lyon, A. M. Boyd, K. D. Ausman, Y. J. Tao, B. Sitharaman, L. J. Wilson, J. L. West, and V. L. Colvin. The differential cytotoxicity of water-soluble fullerenes. Nano. Lett4:1881–1887 (2004). ArticleCAS Google Scholar
C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West, and V. L. Colvin. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials26:7587–7595 (2005). ArticlePubMedCAS Google Scholar
A. Isakovic, Z. Markovic, B. Todorovic-Markovic, N. Nikolic, S. Vranjes-Djuric, M. Mirkovic, M. Dramicanin, L. Harhaji, N. Raicevic, Z. Nikolic, and V. Trajkovic. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci91:173–183 (2006). ArticlePubMedCAS Google Scholar
A. Isakovic, Z. Markovic, N. Nikolic, B. Todorovic-Markovic, S. Vranjes-Djuric, L. Harhaji, N. Raicevic, N. Romcevic, D. Vasiljevic-Radovic, M. Dramicanin, and V. Trajkovic. Inactivation of nanocrystalline C60 cytotoxicity by gamma-irradiation. Biomaterials27:5049–5058 (2006). ArticlePubMedCAS Google Scholar
N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano. Lett5:2578–2585 (2005). ArticlePubMedCAS Google Scholar
E. Oberdorster, S. Zhu, T. M. Blickley, P. McClellan-Green, and M. L. Haasch. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon44:1112–1120 (2006). ArticleCAS Google Scholar
Z. Markovic, B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, L. Vucicevic, K. Janjetovic, A. Isakovic, L. Harhaji, B. Babic-Stojic, M. Dramicanin, and V. Trajkovic. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials28:5437–5448 (2007). Google Scholar
G. Andrievsky, V. Klochkov, and L. Derevyanchenko. Is the C60 fullerene molecule toxic?!. Fullerenes, Nanotubes and Carbon Nanostructures13:363–376 (2005). ArticleCAS Google Scholar
P. Vassalli. The pathophysiology of tumor necrosis factor. Annu. Rev. Immunol10:411–452 (1992). ArticlePubMedCAS Google Scholar
P. Vandenabeele, W. Declerq, R. Beyaert, and W. Fiers. Two tumor necrosis factor receptors: structure and function. Trends Cell. Biol5:392–399 (1995). ArticlePubMedCAS Google Scholar
R. Beyaert, and W. Fiers. Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett340:9–16 (1994). ArticlePubMedCAS Google Scholar
T. Nakamoto, H. Inagawa, K. Takagi, and G. Soma. A new method of antitumor therapy with a high dose of TNF perfusion for unresectable liver tumors. Anticancer Res20:4087–4096 (2000). PubMedCAS Google Scholar
H. M. Shepard, and G. D. Lewis. Resistance of tumor cells to tumor necrosis factor. J. Clin. Immunol8:333–341 (1988). ArticlePubMedCAS Google Scholar
R. Lucas, M. Kresse, M. Latta, and A. Wendel. Tumor necrosis factor: how to make a killer molecule tumor-specific? Current Cancer Drug Targets5:381–392 (2005). ArticlePubMedCAS Google Scholar
D. R. Spriggs, M. L. Sherman, H. Michie, K. A. Arthur, K. Imamura, D. Wilmore, E. Frei 3rd, and D. W. Kufe. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J. Natl. Cancer Inst80:1039–1044 (1988). ArticlePubMedCAS Google Scholar
S. Mocellin, P. Pilati, and D. Nitti. Towards the development of tumor necrosis factor (TNF) sensitizers: making TNF work against cancer. Curr. Pharm. Des13:537–551 (2007). ArticlePubMedCAS Google Scholar
S. Ghavami, M. Hashemi, K. Kadkhoda, S. M. Alavian, G. H. Bay, and M. Los. Apoptosis in liver diseases—detection and therapeutic applications. Med. Sci. Monit11:RA337–RA345 (2005). PubMedCAS Google Scholar
M. I. Luster, P. P. Simeonova, R. M. Gallucci, A. Bruccoleri, M. E. Blazka, B. Yucesoy, and J. M. Matheson. The role of tumor necrosis factor-α in chemical-induced hepatotoxicity. Ann. N.Y. Acad. Sci919:214–220 (2000). ArticlePubMedCAS Google Scholar
M. Leist, F. Gantner, I. Bohlinger, P. G. Germann, G. Tiegs, and A. Wendel. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-α requires transcriptional arrest. J. Immunol153:1778–1788 (1994). PubMedCAS Google Scholar
V. Goossens, K. De Vos, D. Vercammen, M. Steemans, K. Vancompernolle, W. Fiers, P. Vandenabeele, and J. Grooten. Redox regulation of TNF signaling. BioFactors10:145–156 (1999). PubMedCAS Google Scholar
Y. Liu, V. Tergaonkar, S. Krishna, and E. J. Androphy. Human papillomavirus type 16 E6-enhanced susceptibility of L929 cells to tumor necrosis factor-alpha correlates with increased accumulation of reactive oxygen species. J. Biol. Chem274:24819–24827 (1999). ArticlePubMedCAS Google Scholar
D. Vercammen, R. Beyaert, G. Denecker, V. Goossens, G. Van Loo, W. Declercq, J. Grooten, W. Fiers, and P. Vandenabeele. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med187:1477–1485 (1998). ArticlePubMedCAS Google Scholar
D. Monti, L. Moretti, S. Salvioli, E. Straface, W. Malorni, R. Pellicciari, G. Schettini, M. Bisaglia, C. Pincelli, C. Fumelli, M. Bonafe, and C. Franceschi. C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun277:711–717 (2000). ArticlePubMedCAS Google Scholar
Z. Markovic, B. Todorovic-Markovic, M. Marinkovic, and T. Nenadovic. Temperature measurement of carbon arc plasma in helium. Carbon41:369–371 (2003). ArticleCAS Google Scholar
J. D. Fortner, D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol39:4307–4316 (2005). ArticlePubMedCAS Google Scholar
G. C. Zhao, P. Zhang, X. W. Wei, and Z. S. Yang. Determination of proteins with fullerol by a resonance light scattering technique. Anal. Biochem334:297–302 (2004). ArticlePubMedCAS Google Scholar
L. Harhaji, D. Popadic, D. Miljkovic, I. Cvetkovic, A. Isakovic, and V. Trajkovic. Acidosis affects tumor cell survival through modulation of nitric oxide release. Free Radic. Biol. Med40:226–235 (2006). ArticlePubMedCAS Google Scholar
D. A. Flick, and G. E. Gifford. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J. Immunol. Methods68:167–175 (1984). ArticlePubMedCAS Google Scholar
T. C. Chou, and P. Talalay. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul22:27–55 (1984). ArticlePubMedCAS Google Scholar
M. Berndtsson, M. Hagg, T. Panaretakis, A. M. Havelka, M. C. Shoshan, and S. Linder. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int. J. Cancer120:175–180 (2007). ArticlePubMedCAS Google Scholar
D. M. Katschinski, K. Boos, S. G. Schindler, and J. Fandrey. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J. Biol. Chem275:21094–21098 (2000). ArticlePubMedCAS Google Scholar
A. L. Edinger, and C. B. Thompson. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol16:663–669 (2004). ArticlePubMedCAS Google Scholar
J. L. Au, N. Panchal, D. Li, and Y. Gan. Apoptosis: a new pharmacodynamic endpoint. Pharm. Res14:1659–1671 (1997). ArticlePubMedCAS Google Scholar
S. Bulfone-Paus, E. Bulanova, T. Pohl, V. Budagian, H. Durkop, R. Ruckert, U. Kunzendorf, R. Paus, and H. Krause. Death deflected: IL-15 inhibits TNF-α-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Rα chain. FASEB J13:1575–1585 (1999). PubMedCAS Google Scholar
J. P. Piret, T. Arnould, B. Fuks, P. Chatelain, J. Remacle, and C. Michiels. Caspase activation precedes PTP opening in TNF-α-induced apoptosis in L929 cells. Mitochondrion3:261–278 (2004). ArticlePubMedCAS Google Scholar
J. C. Trent, D. J. McConkey, S. M. Loughlin, M. T. Harbison, A. Fernandez, and H. N. Ananthaswamy. Ras signaling in tumor necrosis factor-induced apoptosis. EMBO J15:4497–4505 (1996). PubMedCAS Google Scholar
M. Los, M. Mozoluk, D. Ferrari, A. Stepczynska, C. Stroh, A. Renz, Z. Herceg, Z. Q. Wang, and K. Schulze-Osthoff. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell13:978–988 (2002). ArticlePubMedCAS Google Scholar
C. Fady, A. Gardner, F. Jacoby, K. Briskin, Y. Tu, I. Schmid, and A. Lichtenstein. Atypical apoptotic cell death induced in L929 targets by exposure to tumor necrosis factor. J. Interferon Cytokine Res15:71–80 (1995). ArticlePubMedCAS Google Scholar
D. T. Humphreys, and M. R. Wilson. Modes of L929 cell death induced by TNF-α and other cytotoxic agents. Cytokine11:773–782 (1999). ArticlePubMedCAS Google Scholar
X. Wang, N. Li, B. Liu, H. Sun, T. Chen, H. Li, J. Qiu, L. Zhang, T. Wan, and X. Cao. A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor-α-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J. Biol. Chem279:45855–45864 (2004). ArticlePubMedCAS Google Scholar
A. Strelow, K. Bernardo, S. Adam-Klages, T. Linke, K. Sandhoff, M. Kronke, and D. Adam. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J. Exp. Med192:601–612 (2000). ArticlePubMedCAS Google Scholar
J. J. Lemasters. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol276:G1–G6 (1999). PubMedCAS Google Scholar
G. Denecker, D. Vercammen, W. Declercq, and P. Vandenabeele. Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci58:356–370 (2001). ArticlePubMedCAS Google Scholar
D. B. Zorov, M. Juhaszova, and S. J. Sollott. Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta1757:509–517 (2006). ArticlePubMedCAS Google Scholar
S. Ko, T. T. Kwok, K. P. Fung, Y. M. Choy, C. Y. Lee, and S. K. Kong. Tumour necrosis factor induced an early release of superoxide and a late mitochondrial membrane depolarization in L929 cells. Increase in the production of superoxide is not sufficient to mimic the action of TNF. Biol. Signals Recept10:326–335 (2001). ArticlePubMedCAS Google Scholar
T. Hennet, C. Richter, and E. Peterhans. Tumour necrosis factor-α induces superoxide anion generation in mitochondria of L929 cells. Biochem. J289:587–592 (1993). PubMedCAS Google Scholar
M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, O. Ito, and K. Yase. Laser flash photolysis study on photophysical and photochemical properties of C60 fine particles. J. Photochem. Photobiol., A Chem133:45–50 (2000). ArticleCAS Google Scholar
L. Qingnuan, X. Yan, Z. Xiaodong, L. Ruili, D. Qieqie, S. Xiaoguang, C. Shaoliang, and L. Wenxin. Preparation of 99mTc-C60(OH) x and its biodistribution studies. Nucl. Med. Biol29:707–710 (2002). ArticlePubMed Google Scholar