Modulation of Tumor Necrosis Factor-mediated Cell Death by Fullerenes (original) (raw)

References

  1. S. Bosi, T. Da Ros, G. Spalluto, and M. Prato. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem 38:913–923 (2003).
    Article PubMed CAS Google Scholar
  2. L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K. Shen, T. Y. Luh, D. W. Choi, and T. S. Lin. Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. U S A 94:9434–9439 (1997).
    Article PubMed CAS Google Scholar
  3. L. L. Dugan, E. G. Lovett, K. L. Quick, J. Lotharius, T. T. Lin, K. L. O, and Malley. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord 7:243–246 (2001).
    Article PubMed Google Scholar
  4. C. Fumelli, A. Marconi, S. Salvioli, E. Straface, W. Malorni, A. M. Offidani, R. Pellicciari, G. Schettini, A. Giannetti, D. Monti, C. Franceschi, and C. Pincelli. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol 115:835–841 (2000).
    Article PubMed CAS Google Scholar
  5. J. Lotharius, L. L. Dugan, K. L. O’Malley. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci 19:1284–1293 (1999).
    PubMed CAS Google Scholar
  6. E. Straface, B. Natalini, D. Monti, C. Franceschi, G. Schettini, M. Bisaglia, C. Fumelli, C. Pincelli, R. Pellicciari, and W. Malorni. C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett 454:335–340 (1999).
    Article PubMed CAS Google Scholar
  7. L. L. Dugan, J. K. Gabrielsen, S. P. Yu, T. S. Lin, and D. W. Choi. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis 3:129–135 (1996).
    Article PubMed CAS Google Scholar
  8. H. Jin, W. Q. Chen, X. W. Tang, L. Y. Chiang, C. Y. Yang, J. V. Schloss, and J. Y. Wu. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J. Neurosci. Res 62:600–607 (2000).
    Article PubMed CAS Google Scholar
  9. C. M. Sayes, J. D. Fortner, W. Guo, D. Lyon, A. M. Boyd, K. D. Ausman, Y. J. Tao, B. Sitharaman, L. J. Wilson, J. L. West, and V. L. Colvin. The differential cytotoxicity of water-soluble fullerenes. Nano. Lett 4:1881–1887 (2004).
    Article CAS Google Scholar
  10. C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West, and V. L. Colvin. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595 (2005).
    Article PubMed CAS Google Scholar
  11. A. Isakovic, Z. Markovic, B. Todorovic-Markovic, N. Nikolic, S. Vranjes-Djuric, M. Mirkovic, M. Dramicanin, L. Harhaji, N. Raicevic, Z. Nikolic, and V. Trajkovic. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci 91:173–183 (2006).
    Article PubMed CAS Google Scholar
  12. A. Isakovic, Z. Markovic, N. Nikolic, B. Todorovic-Markovic, S. Vranjes-Djuric, L. Harhaji, N. Raicevic, N. Romcevic, D. Vasiljevic-Radovic, M. Dramicanin, and V. Trajkovic. Inactivation of nanocrystalline C60 cytotoxicity by gamma-irradiation. Biomaterials 27:5049–5058 (2006).
    Article PubMed CAS Google Scholar
  13. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano. Lett 5:2578–2585 (2005).
    Article PubMed CAS Google Scholar
  14. E. Oberdorster, S. Zhu, T. M. Blickley, P. McClellan-Green, and M. L. Haasch. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120 (2006).
    Article CAS Google Scholar
  15. Z. Markovic, B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, L. Vucicevic, K. Janjetovic, A. Isakovic, L. Harhaji, B. Babic-Stojic, M. Dramicanin, and V. Trajkovic. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28:5437–5448 (2007).
    Google Scholar
  16. G. Andrievsky, V. Klochkov, and L. Derevyanchenko. Is the C60 fullerene molecule toxic?!. Fullerenes, Nanotubes and Carbon Nanostructures 13:363–376 (2005).
    Article CAS Google Scholar
  17. P. Vassalli. The pathophysiology of tumor necrosis factor. Annu. Rev. Immunol 10:411–452 (1992).
    Article PubMed CAS Google Scholar
  18. P. Vandenabeele, W. Declerq, R. Beyaert, and W. Fiers. Two tumor necrosis factor receptors: structure and function. Trends Cell. Biol 5:392–399 (1995).
    Article PubMed CAS Google Scholar
  19. R. Beyaert, and W. Fiers. Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16 (1994).
    Article PubMed CAS Google Scholar
  20. T. Nakamoto, H. Inagawa, K. Takagi, and G. Soma. A new method of antitumor therapy with a high dose of TNF perfusion for unresectable liver tumors. Anticancer Res 20:4087–4096 (2000).
    PubMed CAS Google Scholar
  21. H. M. Shepard, and G. D. Lewis. Resistance of tumor cells to tumor necrosis factor. J. Clin. Immunol 8:333–341 (1988).
    Article PubMed CAS Google Scholar
  22. R. Lucas, M. Kresse, M. Latta, and A. Wendel. Tumor necrosis factor: how to make a killer molecule tumor-specific? Current Cancer Drug Targets 5:381–392 (2005).
    Article PubMed CAS Google Scholar
  23. D. R. Spriggs, M. L. Sherman, H. Michie, K. A. Arthur, K. Imamura, D. Wilmore, E. Frei 3rd, and D. W. Kufe. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J. Natl. Cancer Inst 80:1039–1044 (1988).
    Article PubMed CAS Google Scholar
  24. S. Mocellin, P. Pilati, and D. Nitti. Towards the development of tumor necrosis factor (TNF) sensitizers: making TNF work against cancer. Curr. Pharm. Des 13:537–551 (2007).
    Article PubMed CAS Google Scholar
  25. S. Ghavami, M. Hashemi, K. Kadkhoda, S. M. Alavian, G. H. Bay, and M. Los. Apoptosis in liver diseases—detection and therapeutic applications. Med. Sci. Monit 11:RA337–RA345 (2005).
    PubMed CAS Google Scholar
  26. M. I. Luster, P. P. Simeonova, R. M. Gallucci, A. Bruccoleri, M. E. Blazka, B. Yucesoy, and J. M. Matheson. The role of tumor necrosis factor-α in chemical-induced hepatotoxicity. Ann. N.Y. Acad. Sci 919:214–220 (2000).
    Article PubMed CAS Google Scholar
  27. M. Leist, F. Gantner, I. Bohlinger, P. G. Germann, G. Tiegs, and A. Wendel. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-α requires transcriptional arrest. J. Immunol 153:1778–1788 (1994).
    PubMed CAS Google Scholar
  28. V. Goossens, K. De Vos, D. Vercammen, M. Steemans, K. Vancompernolle, W. Fiers, P. Vandenabeele, and J. Grooten. Redox regulation of TNF signaling. BioFactors 10:145–156 (1999).
    PubMed CAS Google Scholar
  29. Y. Liu, V. Tergaonkar, S. Krishna, and E. J. Androphy. Human papillomavirus type 16 E6-enhanced susceptibility of L929 cells to tumor necrosis factor-alpha correlates with increased accumulation of reactive oxygen species. J. Biol. Chem 274:24819–24827 (1999).
    Article PubMed CAS Google Scholar
  30. D. Vercammen, R. Beyaert, G. Denecker, V. Goossens, G. Van Loo, W. Declercq, J. Grooten, W. Fiers, and P. Vandenabeele. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med 187:1477–1485 (1998).
    Article PubMed CAS Google Scholar
  31. D. Monti, L. Moretti, S. Salvioli, E. Straface, W. Malorni, R. Pellicciari, G. Schettini, M. Bisaglia, C. Pincelli, C. Fumelli, M. Bonafe, and C. Franceschi. C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun 277:711–717 (2000).
    Article PubMed CAS Google Scholar
  32. Z. Markovic, B. Todorovic-Markovic, M. Marinkovic, and T. Nenadovic. Temperature measurement of carbon arc plasma in helium. Carbon 41:369–371 (2003).
    Article CAS Google Scholar
  33. J. D. Fortner, D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol 39:4307–4316 (2005).
    Article PubMed CAS Google Scholar
  34. G. C. Zhao, P. Zhang, X. W. Wei, and Z. S. Yang. Determination of proteins with fullerol by a resonance light scattering technique. Anal. Biochem 334:297–302 (2004).
    Article PubMed CAS Google Scholar
  35. L. Harhaji, D. Popadic, D. Miljkovic, I. Cvetkovic, A. Isakovic, and V. Trajkovic. Acidosis affects tumor cell survival through modulation of nitric oxide release. Free Radic. Biol. Med 40:226–235 (2006).
    Article PubMed CAS Google Scholar
  36. D. A. Flick, and G. E. Gifford. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J. Immunol. Methods 68:167–175 (1984).
    Article PubMed CAS Google Scholar
  37. T. C. Chou, and P. Talalay. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul 22:27–55 (1984).
    Article PubMed CAS Google Scholar
  38. M. Berndtsson, M. Hagg, T. Panaretakis, A. M. Havelka, M. C. Shoshan, and S. Linder. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int. J. Cancer 120:175–180 (2007).
    Article PubMed CAS Google Scholar
  39. D. M. Katschinski, K. Boos, S. G. Schindler, and J. Fandrey. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J. Biol. Chem 275:21094–21098 (2000).
    Article PubMed CAS Google Scholar
  40. A. L. Edinger, and C. B. Thompson. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol 16:663–669 (2004).
    Article PubMed CAS Google Scholar
  41. J. L. Au, N. Panchal, D. Li, and Y. Gan. Apoptosis: a new pharmacodynamic endpoint. Pharm. Res 14:1659–1671 (1997).
    Article PubMed CAS Google Scholar
  42. S. Bulfone-Paus, E. Bulanova, T. Pohl, V. Budagian, H. Durkop, R. Ruckert, U. Kunzendorf, R. Paus, and H. Krause. Death deflected: IL-15 inhibits TNF-α-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Rα chain. FASEB J 13:1575–1585 (1999).
    PubMed CAS Google Scholar
  43. J. P. Piret, T. Arnould, B. Fuks, P. Chatelain, J. Remacle, and C. Michiels. Caspase activation precedes PTP opening in TNF-α-induced apoptosis in L929 cells. Mitochondrion 3:261–278 (2004).
    Article PubMed CAS Google Scholar
  44. J. C. Trent, D. J. McConkey, S. M. Loughlin, M. T. Harbison, A. Fernandez, and H. N. Ananthaswamy. Ras signaling in tumor necrosis factor-induced apoptosis. EMBO J 15:4497–4505 (1996).
    PubMed CAS Google Scholar
  45. M. Los, M. Mozoluk, D. Ferrari, A. Stepczynska, C. Stroh, A. Renz, Z. Herceg, Z. Q. Wang, and K. Schulze-Osthoff. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13:978–988 (2002).
    Article PubMed CAS Google Scholar
  46. C. Fady, A. Gardner, F. Jacoby, K. Briskin, Y. Tu, I. Schmid, and A. Lichtenstein. Atypical apoptotic cell death induced in L929 targets by exposure to tumor necrosis factor. J. Interferon Cytokine Res 15:71–80 (1995).
    Article PubMed CAS Google Scholar
  47. D. T. Humphreys, and M. R. Wilson. Modes of L929 cell death induced by TNF-α and other cytotoxic agents. Cytokine 11:773–782 (1999).
    Article PubMed CAS Google Scholar
  48. X. Wang, N. Li, B. Liu, H. Sun, T. Chen, H. Li, J. Qiu, L. Zhang, T. Wan, and X. Cao. A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor-α-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J. Biol. Chem 279:45855–45864 (2004).
    Article PubMed CAS Google Scholar
  49. A. Strelow, K. Bernardo, S. Adam-Klages, T. Linke, K. Sandhoff, M. Kronke, and D. Adam. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J. Exp. Med 192:601–612 (2000).
    Article PubMed CAS Google Scholar
  50. J. J. Lemasters. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol 276:G1–G6 (1999).
    PubMed CAS Google Scholar
  51. G. Denecker, D. Vercammen, W. Declercq, and P. Vandenabeele. Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci 58:356–370 (2001).
    Article PubMed CAS Google Scholar
  52. D. B. Zorov, M. Juhaszova, and S. J. Sollott. Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta 1757:509–517 (2006).
    Article PubMed CAS Google Scholar
  53. S. Ko, T. T. Kwok, K. P. Fung, Y. M. Choy, C. Y. Lee, and S. K. Kong. Tumour necrosis factor induced an early release of superoxide and a late mitochondrial membrane depolarization in L929 cells. Increase in the production of superoxide is not sufficient to mimic the action of TNF. Biol. Signals Recept 10:326–335 (2001).
    Article PubMed CAS Google Scholar
  54. T. Hennet, C. Richter, and E. Peterhans. Tumour necrosis factor-α induces superoxide anion generation in mitochondria of L929 cells. Biochem. J 289:587–592 (1993).
    PubMed CAS Google Scholar
  55. M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, O. Ito, and K. Yase. Laser flash photolysis study on photophysical and photochemical properties of C60 fine particles. J. Photochem. Photobiol., A Chem 133:45–50 (2000).
    Article CAS Google Scholar
  56. L. Qingnuan, X. Yan, Z. Xiaodong, L. Ruili, D. Qieqie, S. Xiaoguang, C. Shaoliang, and L. Wenxin. Preparation of 99mTc-C60(OH) x and its biodistribution studies. Nucl. Med. Biol 29:707–710 (2002).
    Article PubMed Google Scholar

Download references