Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses (original) (raw)
Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Yera D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142 ArticleCASPubMedPubMed Central Google Scholar
Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739 ArticleCASPubMed Google Scholar
Blandini F (2013) Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J NeuroImmune Pharmacol 8:189–201 ArticlePubMed Google Scholar
Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98 ArticleCASPubMed Google Scholar
Boontanrart M, Hall SD, Spanier JA, Hayes CE, Olson JK (2016) Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol 292:126–136 ArticleCASPubMed Google Scholar
Bosurgi L, Manfredi AA, Rovere-Querini P (2011) Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol 2:62 ArticlePubMedPubMed Central Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254 ArticleCASPubMed Google Scholar
Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A (2008) Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 167:90–95 ArticlePubMed Google Scholar
De Lella Ezcurra AL, Chertoff M, Ferrari C, Graciarena M, Pitossi F (2010) Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis 37:630–640 ArticleCASPubMed Google Scholar
de Sampaio e Spohr TC, Martinez R, da Silva EF, Neto VM, Gomes FC (2002) Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factorbeta1. Eur J Neurosci 16:2059–2069 ArticlePubMed Google Scholar
Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680 ArticleCASPubMedPubMed Central Google Scholar
Genin M, Clement F, Fattaccioli A, Raes M, Michiels C (2015) M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577 ArticlePubMedPubMed Central Google Scholar
González H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274:1–13 ArticlePubMed Google Scholar
Gutierrez J, Raju S, Riley JP, Boulis NM (2014) Introduction to neuropathic pain syndromes. Neurosurg Clin N Am 25:639-662
Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397 ArticleCASPubMed Google Scholar
Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526 ArticleCASPubMed Google Scholar
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215 ArticleCASPubMed Google Scholar
Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151 ArticleCASPubMed Google Scholar
Jeong JH, Lee YR, Park HG, Lee WL (2015) The effects of either resveratrol or exercise on macrophage infiltration and switching from M1 to M2 in high fat diet mice. J Exerc Nutrition Biochem 19:65–72 ArticlePubMedPubMed Central Google Scholar
Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347 ArticleCASPubMed Google Scholar
Kim JS, Ryu SY, Yun I, Kim WJ, Lee KS, Park JW, Kim YI (2006) 1alpha,25-dihydroxyvitamin D(3) protects dopaminergic neurons in rodent models of Parkinson’s disease through inhibition of microglial activation. J Clin Neurol 4:252–257 Article Google Scholar
Kim TH, Lee B, Kwon E, Choi SJ, Lee YH, Song GG, Sohn J, Ji JD (2013) Regulation of TREM-1 expression by 1,25-dihydroxyvitamin D3 in human monocytes/macrophages. Immunol Lett 154:80–85 ArticleCASPubMed Google Scholar
Kou PM, Babensee JE (2011) Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 96:239–260 ArticlePubMed Google Scholar
Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGF-β superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14:736–742 CASPubMedPubMed Central Google Scholar
Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53 ArticleCASPubMedPubMed Central Google Scholar
Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146:248–254 ArticleCASPubMed Google Scholar
Lofrumento DD, Saponaro C, Cianciulli A, De Nuccio F, Mitolo V, Nicolardi G, Panaro MA (2011) MPTP-induced neuroinflammation increases the expression of proinflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation 18:79–88 ArticleCASPubMed Google Scholar
Lofrumento DD, Nicolardi G, Cianciulli A, De Nuccio F, La Pesa V, Carofiglio V, Dragone T, Calvello R, Panaro MA (2014) Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun 20:249–260 ArticlePubMed Google Scholar
McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45 ArticlePubMedPubMed Central Google Scholar
Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. J Park Dis 1:19–33 CAS Google Scholar
Moore KW, deWaal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683-765
Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins a and D take Centre stage. Nat Rev Immunol 8:685–698 ArticleCASPubMedPubMed Central Google Scholar
Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281 ArticleCASPubMedPubMed Central Google Scholar
Mstriatumherson CA, Merrick BA, Harry GJ (2014) In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res 25:45–56 Article Google Scholar
Norman AW (2012) The history of the discovery of vitamin D and its daughter steroid hormone. Ann Nutr Metab 61:199–206 ArticleCASPubMed Google Scholar
Olanow CW, Schapira AH (2013) Therapeutic prospects for Parkinson disease. Ann Neurol 74:337–347 ArticleCASPubMed Google Scholar
Panaro MA, Lofrumento DD, Saponaro C, De Nuccio F, Cianciulli A, Mitolo V, Nicolardi G (2008) Expression of TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse model of Parkinson’s-like disease. Immunopharmacol Immunotoxicol 30:729–740 ArticleCASPubMed Google Scholar
Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, Schroeter M, Rueger MA (2016) Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int 2016:2715196 ArticlePubMedPubMed Central Google Scholar
Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894 ArticlePubMed Google Scholar
Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R (2009) 1,25-dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 87:723–732 ArticleCASPubMed Google Scholar
Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170-181
Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 20:670–682
Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518 ArticleCASPubMed Google Scholar
Tarazi FI, Sahli Z, Wolny M, Mousa SA (2014) Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther 144:123-133
Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18:121–129 ArticlePubMed Google Scholar
Unsicker K, Suter-Crazzalora C, Krieglstein K (1996) Growth factor function in the development and maintenance of midbrain dopaminergic neurons: concepts, facts and prospects for TGF-fl. CIBA Found Symp 196:70–80 CASPubMed Google Scholar
Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp 60:251–266 ArticleCAS Google Scholar
Verma R, Kim JY (2016) 1,25-dihydroxyvitamin D3 facilitates M2 polarization and upregulates TLR10 expression on human microglial cells. Neuroimmunomodulation 23:75–80 ArticleCASPubMed Google Scholar
Walsh S, Finn DP, Dowd E (2011) Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson’s disease in the rat. Neuroscience 175:251–261 ArticleCASPubMed Google Scholar
Wang Y, Chiang YH, Su TP, Hayashi T, Morales M, Hoffer BJ, Lin SZ (2000) Vitamin D(3) attenuates cortical infarction induced by middle cerebral arterial ligation in rats. Neuropharmacology 39:873–880 ArticleCASPubMed Google Scholar
Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12:3521–3533 ArticleCASPubMed Google Scholar
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G (2014) Inflammatory response in Parkinson’s disease (review). Mol Med Reports 10:2223-2233
Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, Agrawal DK (2015) Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in Hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 35:2432–2442 ArticleCASPubMedPubMed Central Google Scholar
Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S, Kindy MS (2011) Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J Alzheimers Dis 25:295–307 CASPubMed Google Scholar