The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bennett, J., Carbery, A. & Tao, T., On the multilinear restriction and Kakeya conjectures. Acta Math., 196 (2006), 261–302.
    Article MATH MathSciNet Google Scholar
  2. Dvir, Z., On the size of Kakeya sets in finite fields. J. Amer. Math. Soc., 22 (2009), 1093–1097.
    Article MATH MathSciNet Google Scholar
  3. Gromov, M., Isoperimetry of waists and concentration of maps. Geom. Funct. Anal., 13 (2003), 178–215.
    Article MATH MathSciNet Google Scholar
  4. — Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles. Geom. Funct. Anal., 19 (2009), 743–841.
    Article MATH MathSciNet Google Scholar
  5. Guth, L., Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal., 18 (2009), 1917–1987.
    Article MathSciNet Google Scholar
  6. — Directional isoperimetric inequalities and rational homotopy invariants. Preprint, 2008. arxiv:0802.3549v1 [math.DG].
  7. — Isoperimetric inequalities and rational homotopy invariants. Preprint, 2008. arxiv:0802.3550v1 [math.DG].
  8. Hatcher, A., Algebraic Topology. Cambridge University Press, Cambridge, 2002.
    MATH Google Scholar
  9. Hurewicz, W. & Wallman, H., Dimension Theory. Princeton Mathematical Series, 4. Princeton University Press, Princeton, NJ, 1941.
    Google Scholar
  10. Katz, N. H., Łaba, I. & Tao, T., An improved bound on the Minkowski dimension of Besicovitch sets in R 3. Ann. of Math., 152 (2000), 383–446.
    Article MATH MathSciNet Google Scholar
  11. Loomis, L. H. & Whitney, H., An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc, 55 (1949), 961–962.
    Article MATH MathSciNet Google Scholar
  12. Matoušek, J., Using the Borsuk–Ulam Theorem. Universitext. Springer, Berlin–Heidelberg, 2003.
    MATH Google Scholar
  13. Stone, A. H. & Tukey, J. W., Generalized “sandwich” theorems. Duke Math. J., 9 (1942), 356–359.
    Article MATH MathSciNet Google Scholar

Download references