Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes (original) (raw)
Bakker, P. J. M.; Aten, J. A.; Tukker, C. J., et al. Flow cytometric analysis of experimental parameters for the immunofluorescent labeling of BrdUrd in various tumour cell lines. Histochemistry 91:425–429; 1989. ArticlePubMedCAS Google Scholar
Bennett, D.; Cooper, P. J.; Hart, I. R. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int. J. Cancer 39:414–418; 1987. ArticlePubMedCAS Google Scholar
Brüggen, J.; Sorg, C.; Macher, E. Membrane-associated antigens of human malignant melanoma: serological typing of cell lines using antisera from non-human primates. Cancer Immunol. Immunother. 5:53–68; 1978. Article Google Scholar
Carrel, S.; Doré, J. F.; Ruiter, D. J., et al. The EORTC melanoma group exchange program: evaluation of a multicenter monoclonal antibody study. Int. J. Cancer 48:836–847; 1991. ArticlePubMedCAS Google Scholar
Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987. ArticlePubMedCAS Google Scholar
Danen, E. H. J.; Ten Berge, P. J. M.; Van Muyen, G. N. P., et al. Emergence of α5β3 fibronectin- and αvβ3 vitronectin receptor expression in melanocytic tumor progression. Histopathology 24:249–256; 1994. ArticlePubMedCAS Google Scholar
Danen, E. H. J.; Van Muyen, G. N. P.; Van de Wiel-van Kemenade, E., et al. Regulation of integrin-mediated adhesion to laminin and collagen in human melanocytes and non- and highly metastatic melanoma cells. Int. J. Cancer 54:315–321; 1993. ArticlePubMedCAS Google Scholar
DeCaprio, J. A.; Ludlow, J. W.; Figge, J., et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283; 1988. ArticlePubMedCAS Google Scholar
De Vries, J. E.; Keizer, G. D.; te Velde, A. A., et al. Characterization of melanoma-associated surface antigens involved in the adhesion and motility of human melanoma cells. Int. J. Cancer 38:465–473; 1986. ArticlePubMed Google Scholar
Eisinger, M.; Marko, S. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc. Natl. Acad. Sci. USA 79:2018–2022; 1982. ArticlePubMedCAS Google Scholar
Evans, A. S. Viral infections of humans: epidemiology and control. New York: Plenum Medical Book Co.; 1991:694. Google Scholar
Fidler, I. J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 5:29–49; 1986. ArticlePubMedCAS Google Scholar
Fontijn, R.; Hop, C.; Brinkman, H. J., et al. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotropic replication-deficient retrovirus containing human papilloma virus. Exp. Cell Res. 216:199–207; 1995. ArticlePubMedCAS Google Scholar
Gadd, S. J.; Ashman, L. K. A murine monoclonal antibody specific for a cell surface antigen expressed by a subgroup of human myeloid leukemias. Leuk. Res. 9:1329–1336; 1985. ArticlePubMedCAS Google Scholar
Halaban, R.; Alfano, F. D. Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20:447–450; 1984. ArticlePubMedCAS Google Scholar
Halaban, R.; Pomerantz, S. H.; Marshall, S., et al. Regulation of tyrosinase in human melanocytes in culture. J. Cell Biol. 97:480–488; 1983. ArticlePubMedCAS Google Scholar
Halbert, C. L.; Demers, G. W.; Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of primary human epithelial cells. J. Virol. 65:473–478; 1991. PubMedCAS Google Scholar
Ishikoh, A. U.; Hayashi, A.; Tokimitsu, I., et al. Coordinate modulation of melanogenesis and type I trimer collagen secretion by type I collagen substratum during reversible conversion between melanotic and amelanotic cells on mouse B16 melanoma. J. Biochem. 116:610–614; 1994. PubMedCAS Google Scholar
Katano, M.; Saxton, R. E.; Cochran, A. J., et al. Establishment of an ascitic human melanoma cell line that metastasizes to lung and liver in nude mice. J. Cancer Res. Clin. Oncol. 108:197–203; 1984. ArticlePubMedCAS Google Scholar
Le Poole, I. C.; Mutis, T.; van den Wijngaard, R. M. J. G. J., et al. A novel, antigen-presenting function of melanocytes and its possible relationship to hypopigmentary disorders. J. Immunol. 151:7284–7292; 1993. PubMed Google Scholar
Le Poole, I. C.; van den Wijngaard, R. M. J. G. J.; Westerhof, W., et al. Presence or absence of melanocytes in vitiligo lesions. J. Invest. Dermatol. 100:816–822; 1993. ArticlePubMed Google Scholar
Luo, D.; Chen, H.; Jimbow, K. Cotransfection of genes encoding human tyrosinase and TRP-1 prevents melanocyte death and enhances melanin pigmentation and gene expression of Lamp-1. Exp. Cell Res. 213:231–241; 1994. ArticlePubMedCAS Google Scholar
Miller, A. D.; Buttimore, C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6:2895–2902; 1986. PubMedCAS Google Scholar
Münger, K.; Phelps, W. C.; Bubb, V., et al. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63:4417–4421; 1989. PubMed Google Scholar
Perez-Reyes, N.; Halbert, C. L.; Smith, P. P., et al. Immortalization of primary human smooth muscle cells. Proc. Natl. Acad. Sci. USA 89:1224–1229; 1992. ArticlePubMedCAS Google Scholar
Seedorf, K.; Krämmer, G.; Dürst, M., et al. Human papillomavirus type 16 DNA sequence. Virology 145:181–185; 1985. ArticlePubMedCAS Google Scholar
Smit, N. P. M.; Le Poole, I. C.; van den Wijngaard, R. M. J. G. J., et al. Expression of different immunological markers by cultured human melanocytes. Arch. Dermatol. Res. 285:356–365; 1993. ArticlePubMedCAS Google Scholar
Smotkin, D.; Wettstein, F. O. Transcription of human papilloma virus type 16 early genes in a cervical cancer-derived and a cancer-derived cell line and identification of the E7 protein. Proc. Natl. Acad. Sci. USA 83:4680–4684; 1986. ArticlePubMedCAS Google Scholar
Swope, V. B.; Medrano, E. E.; Smalara, D., et al. Long-term proliferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-1, and basic fibroblast growth factor. Exp. Cell Res. 217:453–459; 1995. ArticlePubMedCAS Google Scholar
Thomson, T. M.; Mattes, M. J.; Roux, L., et al. Pigmentation-associated glycoprotein of human melanomas and melanocytes: definition with a mouse monoclonal antibody. J. Invest. Dermatol. 85:169–174; 1985. ArticlePubMedCAS Google Scholar
Tomita, Y.; Shibahara, S.; Takeda, A., et al. The monoclonal antibodies TMH-1 and TMH-2 specifically bind to a protein encoded at the murine b-locus, not to the authentic tyrosinase at the c-locus. J. Invest. Dermatol. 96:500–504; 1991. ArticlePubMedCAS Google Scholar
Van Muyen, G. N. P.; Cornelissen, L. M. H. A.; Jansen, C. F. J., et al. Antigen expression of metastasizing and non-metastasizing human melanoma cells xenografted into nude mice. Clin. Exp. Metastasis 9:259–272; 1991. Article Google Scholar
Van Muijen, G. N. P.; Jansen, C. F. J.; Cornelissen, L. M. H. A., et al. Establishment and characterization of human melanoma cell line (MV3) which is highly metastatic in nude mice. Int. J. Cancer 48:85–91; 1991. ArticlePubMed Google Scholar
Versteeg, R.; Noordermeer, I. A.; Krüsse-Wolters, M., et al. C-myc downregulates class I HLA-expression in human melanomas. EMBO J. 7:1023–1029; 1988. PubMedCAS Google Scholar
Watanabe, S.; Kanda, T.; Yoshiike, K. Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7. Virology 63:965–969; 1989. CAS Google Scholar
Walter, C.; Frenk, E.; Thermolysin treatment: a new method for dermoepidermal separation. J. Invest. Dermatol. 87:174; 1986 (abstr.) Google Scholar
Whittaker, J. R. Changes in melanogenesis during the dedifferentiation of chick retinal pigment cells in cell culture. Dev. Biol. 86:99–127; 1963. Article Google Scholar
Whyte, P.; Buchbovich, K. J.; Horowitz, J. M., et al. Association between an oncogene and an antioncogene: the adenovirus Ela proteins bind to the retinoblastoma gene product. Nature (Lond.) 334:124–129; 1988. ArticleCAS Google Scholar
Yavuzer, U.; Keenan, E.; Lowings, P., et al. The microphtalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10:123–134; 1995. PubMedCAS Google Scholar
Zepter, K.; Häffner, A. C.; Trefzer, U., et al. Reduced growth factor requirements and accelerated cell-cycle kinetics in adult human melanocytes transformed with SV40 large T antigen. J. Invest. Dermatol. 104:755–762; 1995. ArticlePubMedCAS Google Scholar