Transformation of bile acids and sterols by clostridia (fusiform bacteria) in Wistar rats (original) (raw)

References

  1. Groh, H., Schade, K., and Hlejrhold-Schubert, C. (1993) Steroid Metabolism with Intestinal Microorganisms, J. Basic Microbiol. 33, 59–72.
    PubMed CAS Google Scholar
  2. Jonsson, G., Midtvedt, A.-C., Norman, A., and Midtvedt, T. (1995) Intestinal Microbial Bile Acid Transformation in Healthy Infants, J. Pediatr. Gastroenterol. Nutr. 20, 394–402.
    Article PubMed CAS Google Scholar
  3. Hylemon, P.B., and Glass, T.L. (1983) Blotransformation of Bile Acids and Cholesterol by the Intestinal Microflora, in Human Intestinal Microflora in Health and Disease (Hentges, D.J., ed.) pp. 189–213. Academic Press, New York.
    Google Scholar
  4. Hirano, S., Nakama, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7α-Dehydroxylating Bile Acids, Appl. Environ. Microbiol. 41, 737–745.
    PubMed CAS Google Scholar
  5. Takamine, E., and Imamura, T. (1995) Isolation and Characterization of Bile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18.
    PubMed CAS Google Scholar
  6. Archer, R.H. Maddox, I.S., and Chong, R. (1982) Transformation of Cholic Acid by Clostridium bifermentans, J. Appl. Bacteriol. 52, 49–56.
    CAS Google Scholar
  7. Stellwag, E.J., and Hylemon, P.B. (1979) 7α-Dehydroxylation of Cholic Acid and Cheno-deoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333.
    PubMed CAS Google Scholar
  8. Edenharder, R., and Slemrova, J. (1976) The Significance of the Bacterial Steroid Degradation for the Etiology of Large Bowel Cancer. IV. Deconjugation of Glycocholic Acid, Oxidation and Reduction of Cholic Acid by Saccharolytic Bacteriodes Species, Zentralbl. Bakteriol. (Orig. B) 162, 350–373.
    CAS Google Scholar
  9. Midtvedt, T., and Norman, A. (1967) Bile Acid Transformation by Microbial Strains Belonging to Genera Found in Intestinal Contents, Acta Pathol. Microbiol. Scand. 71, 629–638.
    Article PubMed CAS Google Scholar
  10. Hirano, S., and Masuda, N. (1982) Enhancement of the 7α-Dehydroxylase Activity of a Gram-Positive Anaerobe by Bacteroides and Its Significance in the 7-Dehydroxylation of Ursodeoxycholic Acid, J. Lipid. Res. 23, 1152–1158.
    PubMed CAS Google Scholar
  11. Hylemon, P.B., Cacciapuotic, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7α-Dehydroxylation of Cholic Acid by Cell-free Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510.
    PubMed CAS Google Scholar
  12. Kayahara, T., Tamura, T., Amuro, Y., Higashino, K., Igimi, H., and Uchida, K. (1994) Δ22-β-Muricholic Acid in Monoassociated Rats and Conventional Rats, Lipids 29, 289–296.
    PubMed CAS Google Scholar
  13. Kanamura, M. (1982) Experimental Studies on Bile Acid Absorption and Bile Acid Metabolism, Jpn. J. Surg. 83, 677–690 (in Japanese).
    CAS Google Scholar
  14. Ohishi, I. (1986) Effect of Total Colectomy and Ileoproctostomy on Bile Acid Metabolism in Rats, Acta Medica Hyogoensia 11, 13–31 (in Japanese).
    CAS Google Scholar
  15. Eyssen, H., Piessens-Denef, M. and Parmentier, G. (1972) Role of Cecum in Maintaining Δ5-Steroid- and Fatty Acid-Reducing Activity of the Rat Intestinal Microflora, J. Nutr. 102, 1501–1512.
    PubMed CAS Google Scholar
  16. Ito, K., and Mitsuoka, T. (1985) Characterization of Clostridia Isolated from Feces of Limited Flora Mice and Their Effect on Caecal Size When Associated with Germ-free Mice, Lab. Animals 19, 111–118.
    Google Scholar
  17. Benno, Y., Shiragami, N., Uchida, K., Yoshida, T., and Mitsuoka, T. (1986) Effect of Moxalactam on Human Fecal Microflora, Antimicrob. Agents Chemother. 29, 175–178.
    PubMed CAS Google Scholar
  18. Goto, J., Hasegawa, H., Kato, H., and Nambara, T. (1978) A New Method for Simulatneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta 87, 141–147.
    Article PubMed CAS Google Scholar
  19. Kuruma, K., Morioka, Y., Sasakura, K., Igimi, H., and Uchida, K. (1996) Determination of Sulfate-Conjugated 3β-Hydroxy Bile Acid in Urine by HPLC with Postcolumn Fluorescent Detection Using an Immobilized β-Hydroxysterodd Dehydrogenase Column, Anal. Sci. 12, 847–851.
    CAS Google Scholar
  20. Sakakura, H., Suzuki, M., Kimura, N., Takeda, H., Nagata, S., and Maeda, M. (1993) Simultaneous Determination of Bile Acids in Rat Bile and Serum by High Performance Liquid Chromatography, J. Chromatogr. 621, 123–131.
    PubMed CAS Google Scholar
  21. Sacquet, E.C., Gadelle, D.P. Riottot, M.J., and Raibaud, P.M. (1984) Absence of Transformation of β-Muricholic Acid by Human Microflora Implanted in the Digestive Tracts of Germfree Male Rats, Appl. Environ. Microbiol. 47, 1167–1168.
    PubMed CAS Google Scholar

Download references