Neutrophils in asthma pathophysiology (original) (raw)
Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention (updated 2002). Accessible at http:// www.ginasthma.com/. Accessed on August 5 2002. Up-to-date key source for information about asthma covering all aspects, including definitions, burden of asthma, risk factors, mechanisms of asthma, diagnosis and classification, education, delivery of care, and asthma management.
Douwes J, Gibson P, Pekkanen J, Pearce N: Non-eosinophilic asthma: importance and possible mechanisms. Thorax 2002, 57:643–648. In this review article, a series of different studies that documented airway eosinophils in a general asthmatic population are analyzed. Eosinophils were involved in only approximately 50% of the subjects, with increased neutrophil and IL-8 levels associated with most studies of noneosinophilic asthma. ArticlePubMedCAS Google Scholar
Taha RA, Laberge S, Hamid Q, Olivenstein R: Increased expression of the chemoattractant cytokines eotaxin, monocyte chemotactic protein-4, and interleukin-16 in induced sputum in asthmatic patients. Chest 2001, 120:595–601. ArticlePubMedCAS Google Scholar
Keatings VM, Collins PD, Scott DM, Barnes PJ: Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996, 153:530–534. PubMedCAS Google Scholar
Gibson PG, Simpson JL, Saltos N: Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001, 119:1329–1336. ArticlePubMedCAS Google Scholar
Boulet LP, Turcotte H, Boutet M, et al.: Influence of natural antigenic exposure on expiratory flows, methacholine responsiveness, and airway inflammation in mild allergic asthma. J Allergy Clin Immunol 1993, 91:883–893. ArticlePubMedCAS Google Scholar
Van Vyve T, Chanez P, Lacoste JY, et al.: Comparison between bronchial and alveolar samples of bronchoalveolar lavage fluid in asthma. Chest 1992, 102:356–361. PubMed Google Scholar
Stenfors N, Pourazar J, Blomberg A, et al.: Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects. Respir Med 2002, 96:352–358. This is a carefully conducted study that examines bronchial washes, bronchoalveolar lavage, and biopsies from mild asthmatics and control subjects after exposure to either ozone or air. At baseline, asthmatics had higher neutrophil counts in bronchial wash, BAL, bronchial epithelium, and bronchial submucosa than control subjects did. Neutrophilic airway responses were seen in both control subjects and mild asthmatics exposed to ozone. ArticlePubMedCAS Google Scholar
Lamblin C, Gosset P, Tillie-Leblond I, et al.: Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med 1998, 157:394–402. PubMedCAS Google Scholar
Hood PP, Cotter TP, Costello JF, Sampson AP: Effect of intravenous corticosteroid on ex vivo leukotriene generation by blood leucocytes of normal and asthmatic patients. Thorax 1999, 54:1075–1082. ArticlePubMedCAS Google Scholar
Chanez P, Enander I, Jones I, et al.: Interleukin 8 in bronchoalveolar lavage of asthmatic and chronic bronchitis patients. Int Arch Allergy Immunol 1996, 111:83–88. PubMedCAS Google Scholar
Maruyama N, Tamura G, Aizawa T, et al.: Accumulation of basophils and their chemotactic activity in the airways during natural airway narrowing in asthmatic individuals. Am J Respir Crit Care Med 1994, 150:1086–1093. PubMedCAS Google Scholar
Lacoste JY, Bousquet J, Chanez P, et al.: Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 1993, 92:537–548. ArticlePubMedCAS Google Scholar
Bousquet J, Chanez P, Lacoste JY, et al.: Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 1991, 88:649–660. ArticlePubMedCAS Google Scholar
Ndukwu IM, Naureckas ET, Maxwell C, et al.: Relationship of cellular transmigration and airway response after allergen challenge. Am J Respir Crit Care Med 1999, 160:1516–1524. PubMedCAS Google Scholar
Rak S, Bjornson A, Hakanson L, et al.: The effect of immunotherapy on eosinophil accumulation and production of eosinophil chemotactic activity in the lung of subjects with asthma during natural pollen exposure. J Allergy Clin Immunol 1991, 88:878–888. ArticlePubMedCAS Google Scholar
Frangova V, Sacco O, Silvestri M, et al.: BAL neutrophilia in asthmatic patients: a by-product of eosinophil recruitment? Chest 1996, 110:1236–1242. PubMedCAS Google Scholar
Nocker RE, Schoonbrood DF, van de Graaf EA, et al.: Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 1996, 109:183–191. ArticlePubMedCAS Google Scholar
Wenzel SE, Szefler SJ, Leung DY, et al.: Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 1997, 156:737–743. PubMedCAS Google Scholar
Tanizaki Y, Kitani H, Okazaki M, et al.: Changes in the proportions of bronchoalveolar lymphocytes, neutrophils and basophilic cells and the release of histamine and leukotrienes from bronchoalveolar cells in patients with steroiddependent intractable asthma. Int Arch Allergy Immunol 1993, 101:196–202. ArticlePubMedCAS Google Scholar
Tanizaki Y, Kitani H, Okazaki M, et al.: Effects of long-term glucocorticoid therapy on bronchoalveolar cells in adult patients with bronchial asthma. J Asthma 1993, 30:309–318. PubMedCAS Google Scholar
Tanizaki Y, Kitani H, Okazaki M, et al.: Airway inflammation and bronchial hyperresponsiveness in patients with asthma: comparison between atopic and nonatopic asthma. Arerugi 1993, 42:26–33. PubMedCAS Google Scholar
Gibson PG, Allen CJ, Yang JP, et al.: Intraepithelial mast cells in allergic and nonallergic asthma: assessment using bronchial brushings. Am Rev Respir Dis 1993, 148:80–86. PubMedCAS Google Scholar
Mattoli S, Mattoso VL, Soloperto M, et al.: Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol 1991, 87:794–802. ArticlePubMedCAS Google Scholar
Martin RJ, Cicutto LC, Smith HR, et al.: Airways inflammation in nocturnal asthma. Am Rev Respir Dis 1991, 143:351–357. PubMedCAS Google Scholar
Paggiaro P, Bacci E, Paoletti P, et al.: Bronchoalveolar lavage and morphology of the airways after cessation of exposure in asthmatic subjects sensitized to toluene diisocyanate. Chest 1990, 98:536–542. PubMedCAS Google Scholar
Frew AJ, Chan H, Lam S, Chan-Yeung M: Bronchial inflammation in occupational asthma due to western red cedar. Am J Respir Crit Care Med 1995, 151:340–344. PubMedCAS Google Scholar
Chan-Yeung M, Leriche J, Maclean L, Lam S: Comparison of cellular and protein changes in bronchial lavage fluid of symptomatic and asymptomatic patients with red cedar asthma on follow-up examination. Clin Allergy 1988, 18:359–365. ArticlePubMedCAS Google Scholar
Wenzel SE, Schwartz LB, Langmack EL, et al.: Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999, 160:1001–1008. PubMedCAS Google Scholar
Sur S, Crotty TB, Kephart GM, et al.: Sudden-onset fatal asthma: a distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa?Am Rev Respir Dis 1993, 148:713–719. PubMedCAS Google Scholar
Carroll N, Carello S, Cooke C, James A: Airway structure and inflammatory cells in fatal attacks of asthma. Eur Respir J 1996, 9:709–715. ArticlePubMedCAS Google Scholar
Carroll NG, Mutavdzic S, James AL: Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 2002, 57:677–682. ArticlePubMedCAS Google Scholar
Silvestri M, Oddera S, Sacco O, et al.: Bronchial and bronchoalveolar inflammation in single early and dual responders after allergen inhalation challenge. Lung 1997, 175:277–285. ArticlePubMedCAS Google Scholar
Rossi GA, Crimi E, Lantero S, et al.: Late-phase asthmatic reaction to inhaled allergen is associated with early recruitment of eosinophils in the airways. Am Rev Respir Dis 1991, 144:379–383. PubMedCAS Google Scholar
Calhoun WJ, Bush RK: Enhanced reactive oxygen species metabolism of airspace cells and airway inflammation follow antigen challenge in human asthma. J Allergy Clin Immunol 1990, 86:306–313. ArticlePubMedCAS Google Scholar
Diaz P, Gonzalez MC, Galleguillos FR, et al.: Leukocytes and mediators in bronchoalveolar lavage during allergeninduced late-phase asthmatic reactions. Am Rev Respir Dis 1989, 139:1383–1389. PubMedCAS Google Scholar
Hohlfeld JM, Ahlf K, Enhorning G, et al.: Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am J Respir Crit Care Med 1999, 159:1803–1809. PubMedCAS Google Scholar
Liu MC, Proud D, Lichtenstein LM, et al.: Effects of prednisone on the cellular responses and release of cytokines and mediators after segmental allergen challenge of asthmatic subjects. J Allergy Clin Immunol 2001, 108:29–38. ArticlePubMedCAS Google Scholar
Kelly EA, Busse WW, Jarjour NN: Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am J Respir Crit Care Med 2000, 162:1157–1161. PubMedCAS Google Scholar
Nocker RE, Out TA, Weller FR, et al.: Influx of neutrophils into the airway lumen at 4 h after segmental allergen challenge in asthma. Int Arch Allergy Immunol 1999, 119:45–53. ArticlePubMedCAS Google Scholar
Teran LM, Carroll MP, Frew AJ, et al.: Leukocyte recruitment after local endobronchial allergen challenge in asthma: relationship to procedure and to airway interleukin-8 release. Am J Respir Crit Care Med 1996, 154:469–476. PubMedCAS Google Scholar
Liu MC, Hubbard WC, Proud D, et al.: Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics: cellular, mediator, and permeability changes. Am Rev Respir Dis 1991, 144:51–58. PubMedCAS Google Scholar
Virchow JC Jr, Walker C, Hafner D, et al.: T cells and cytokines in bronchoalveolar lavage fluid after segmental allergen provocation in atopic asthma. Am J Respir Crit Care Med 1995, 151:960–968. PubMed Google Scholar
Basha MA, Gross KB, Gwizdala CJ, et al.: Bronchoalveolar lavage neutrophilia in asthmatic and healthy volunteers after controlled exposure to ozone and filtered purified air. Chest 1994, 106:1757–1765. PubMedCAS Google Scholar
Vagaggini B, Taccola M, Conti I, et al.: Budesonide reduces neutrophilic but not functional airway response to ozone in mild asthmatics. Am J Respir Crit Care Med 2001, 164:2172–2176. PubMedCAS Google Scholar
Hiltermann JT, Lapperre TS, van Bree L, et al.: Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics: a new noninvasive tool in epidemiologic studies on air pollution and asthma. Free Radic Biol Med 1999, 27:1448–1445. ArticlePubMedCAS Google Scholar
Little SA, MacLeod KJ, Chalmers GW, et al.: Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am J Med 2002, 112:446–452. ArticlePubMed Google Scholar
Frew AJ, St-Pierre J, Teran LM, et al.: Cellular and mediator responses twenty-four hours after local endobronchial allergen challenge of asthmatic airways. J Allergy Clin Immunol 1996, 98:133–143. ArticlePubMedCAS Google Scholar
Yousefi S, Hemmann S, Weber M, et al.: IL-8 is expressed by human peripheral blood eosinophils: evidence for increased secretion in asthma. J Immunol 1995, 154:5481–5490. PubMedCAS Google Scholar
Teran LM, Campos MG, Begishvilli BT, et al.: Identification of neutrophil chemotactic factors in bronchoalveolar lavage fluid of asthmatic patients. Clin Exp Allergy 1997, 27:396–405. ArticlePubMedCAS Google Scholar
Park CS, Cho SW, Lee SY, et al.: Neutrophil chemotactic activities in bronchoalveolar lavage fluid from patients with bronchial asthma. Korean J Intern Med 1995, 10:16–24. PubMedCAS Google Scholar
Wardlaw AJ, Hay H, Cromwell O, et al.: Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases. J Allergy Clin Immunol 1989, 84:19–26. ArticlePubMedCAS Google Scholar
Krug N, Tschernig T, Erpenbeck VJ, et al.: Complement factors C3a and C5a are increased in bronchoalveolar lavage fluid after segmental allergen provocation in subjects with asthma. Am J Respir Crit Care Med 2001, 164:1841–1843. PubMedCAS Google Scholar
Warner JO, Naspitz CK, Cropp GJA: Third International Pediatric Consensus statement on the management of childhood asthma. Pediatr Pulmonol 1998, 25:1–17. ArticlePubMedCAS Google Scholar
Barbato A, Panizzolo C, Gheno M, et al.: Bronchoalveolar lavage in asthmatic children: evidence of neutrophil activation in mild-to-moderate persistent asthma. Pediatr Allergy Immunol 2001, 12:73–77. ArticlePubMedCAS Google Scholar
Marguet C, Jouen-Boedes F, Dean TP, Warner JO: Bronchoalveolar cell profiles in children with asthma, infantile wheeze, chronic cough, or cystic fibrosis. Am J Respir Crit Care Med 1999, 159:1533–1540. PubMedCAS Google Scholar
Marguet C, Dean TP, Basuyau JP, Warner JO: Eosinophil cationic protein and interleukin-8 levels in bronchial lavage fluid from children with asthma and infantile wheeze. Pediatr Allergy Immunol 2001, 12:27–33. ArticlePubMedCAS Google Scholar
Stevenson EC, Turner G, Heaney LG, et al.: Bronchoalveolar lavage findings suggest two different forms of childhood asthma. Clin Exp Allergy 1997, 27:1027–1035. ArticlePubMedCAS Google Scholar
Kim CK, Chung CY, Choi SJ, et al.: Bronchoalveolar lavage cellular composition in acute asthma and acute bronchiolitis. J Pediatr 2000, 137:517–522. ArticlePubMedCAS Google Scholar
Krawiec ME, Westcott JY, Chu HW, et al.: Persistent wheezing in very young children is associated with lower respiratory inflammation. Am J Respir Crit Care Med 2001, 163:1338–1343. In very young, wheezy children, without airway infection, both neutrophils and eosinophils are raised in BAL fluid. This suggests that there may be different underlying mechanisms in childhood and adult disease. PubMedCAS Google Scholar
Midulla F, Villani A, Merolla R, et al.: Bronchoalveolar lavage studies in children without parenchymal lung disease: cellular constituents and protein levels. Pediatr Pulmonol 1995, 20:112–118. ArticlePubMedCAS Google Scholar
Fitch PS, Brown V, Schock BC, et al.: Chronic cough in children: bronchoalveolar lavage findings. Eur Respir J 2000, 16:1109–1114. ArticlePubMedCAS Google Scholar
Twaddell SH, Gibson PG, Carty K, et al.: Assessment of airway inflammation in children with acute asthma using induced sputum. Eur Respir J 1996, 9:2104–2108. ArticlePubMedCAS Google Scholar
Chalmers GW, MacLeod KJ, Thomson L, et al.: Smoking and airway inflammation in patients with mild asthma. Chest 2001, 120:1917–1922. This study highlights the importance of controlling for smoking history when examining airway neutrophil counts and measuring neutrophil-derived mediators. ArticlePubMedCAS Google Scholar
Belda J, Hussack P, Dolovich M, et al.: Sputum induction: effect of nebulizer output and inhalation time on cell counts and fluid-phase measures. Clin Exp Allergy 2001, 31:1740–1744. ArticlePubMedCAS Google Scholar
Hunt LW, Gleich GJ, Ohnishi T, et al.: Endotoxin contamination causes neutrophilia following pulmonary allergen challenge. Am J Respir Crit Care Med 1994, 149:1471–1475. PubMedCAS Google Scholar
Cox G: Glucocorticoid treatment inhibits apoptosis in human neutrophils: separation of survival and activation outcomes. J Immunol 1995, 154:4719–4725. PubMedCAS Google Scholar
Ratjen F, Bredendiek M, Brendel M, et al.: Differential cytology of bronchoalveolar lavage fluid in normal children. Eur Respir J 1994, 7:1865–1870. ArticlePubMedCAS Google Scholar
Riedler J, Grigg J, Stone C, et al.: Bronchoalveolar lavage cellularity in healthy children. Am J Respir Crit Care Med 1995, 152:163–168. PubMedCAS Google Scholar
Heaney LG, Stevenson EC, Turner G, et al.: Investigating paediatric airways by non-bronchoscopic lavage: normal cellular data. Clin Exp Allergy 1996, 26:799–806. ArticlePubMedCAS Google Scholar
Ferguson AC, Wong FW: Bronchial hyperresponsiveness in asthmatic children: correlation with macrophages and eosinophils in broncholavage fluid. Chest 1989, 96:988–991. PubMedCAS Google Scholar
Just J, Fournier L, Momas I, et al.: Clinical significance of bronchoalveolar eosinophils in childhood asthma. Allergy Clin Immunol 2002, 110:42–44. Article Google Scholar