Omental immune aggregates and tumor metastasis within the peritoneal cavity (original) (raw)

Abstract

The omentum, an important peritoneal tissue, is studded with a high number of immune aggregates, or “milky spots,” the number, function, and phenotype of which is largely unknown. We have analyzed the immune composition on the normal omentum and also have shown that both free immune cells and tumor cells in the peritoneal fluid bind preferentially to these immune aggregates. This binding may be mediated by the network of collagen I fibers, which overlay these areas. In addition, we have shown that not only do omental vessels express vascular endothelial growth factor receptor 3 (VEGFR3), a receptor that is only found on angiogenic blood vessels, but that tumor cells co-localize with these vessels, possibly increasing the ability of tumor to induce neovascularization and therefore thrive.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Society AC: Cancer Facts & Figs 2008. Available at: http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf.
  2. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, et al. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5:19–24.
    Article CAS PubMed Google Scholar
  3. Krist LF, Eestermans IL, Steenbergen JJ, Hoefsmit EC, Cuesta MA, Meyer S, et al. Cellular composition of milky spots in the human greater omentum: an immunochemical and ultrastructural study. Anat Rec. 1995;241:163–74.
    Article CAS PubMed Google Scholar
  4. Gerber SA, Rybalko VY, Bigelow CE, Lugade AA, Foster TH, Frelinger JG, et al. Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol. 2006;169:1739–52.
    Article CAS PubMed Google Scholar
  5. Ranvier H. Du developpement t de l’accroissement des vaisseaux sanguins. Arch Physiol. 1874;1:429.
    Google Scholar
  6. Shimotsuma M, Shields JW, Simpson-Morgan MW, Sakuyama A, Shirasu M, Hagiwara A, et al. Morpho-physiological function and role of omental milky spots as omentum-associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology. 1993;26:90–101.
    CAS PubMed Google Scholar
  7. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21:585–91.
    Article CAS PubMed Google Scholar
  8. Gerber SA, Moran JP, Frelinger JG, Frelinger JA, Fenton BM, Lord EM. Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts. Br J Cancer. 2003;88:1453–61.
    Article CAS PubMed Google Scholar
  9. Koten JW, den Otter W. Are omental milky spots an intestinal thymus? Lancet. 1991;338:1189–90.
    Article CAS PubMed Google Scholar
  10. Murakami M, Honjo T. B-1 cells and autoimmunity. Ann NY Acad Sci. 1995;764:402–9.
    Article CAS PubMed Google Scholar
  11. Kearney JF, Bartels J, Hamilton AM, Lehuen A, Solvason N, Vakil M. Development and function of the early B cell repertoire. Int Rev Immunol. 1992;8:247–57.
    Article CAS PubMed Google Scholar
  12. Resendizz-Albor AA, Esquivel R, Lopez-Revilla R, Verdin L, Moreno-Fierros L. Striding phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 2005;76:2783–803.
    Article CAS Google Scholar
  13. Seibold F, Seibold-Schmid B, Cong Y, Shu FY, McCabe R, Weaver C, et al. Regional differences in L-selectin expression in murine intestinal lymphocytes. Gastroenterology. 1998;114:965–74.
    Article CAS PubMed Google Scholar
  14. Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA. 2004;101:16745–9.
    Article CAS PubMed Google Scholar
  15. Beelen RH. The greater omentum: physiology and immunological concepts. Neth J Surg. 1991;43:145–9.
    CAS PubMed Google Scholar
  16. Freedman RS, Tomasovic B, Templin S, Atkinson EN, Kudelka A, Edwards CL, et al. Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J Immunol Methods. 1994;167:145–60.
    Article CAS PubMed Google Scholar
  17. Ioannides CG, Platsoucas CD, Rashed S, Wharton JT, Edwards CL, Freedman RS. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res. 1991;51:4257–65.
    CAS PubMed Google Scholar
  18. Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol. 2000;156:1499–504.
    CAS PubMed Google Scholar
  19. Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer. 1999;86:2406–12.
    Article CAS PubMed Google Scholar
  20. Clarijs R, Schalkwijk L, Hofmann UB, Ruiter DJ, de Waal RM. Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma. Cancer Res. 2002;62:7059–65.
    CAS PubMed Google Scholar
  21. Longatto Filho A, Martins A, Costa SM, Schmitt FC. VEGFR-3 expression in breast cancer tissue is not restricted to lymphatic vessels. Pathol Res Pract. 2005;201:93–9.
    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
    Elizabeth W. Sorensen, Scott A. Gerber, Abigail L. Sedlacek, Viktoriya Y. Rybalko, Winnie M. Chan & Edith M. Lord

Authors

  1. Elizabeth W. Sorensen
  2. Scott A. Gerber
  3. Abigail L. Sedlacek
  4. Viktoriya Y. Rybalko
  5. Winnie M. Chan
  6. Edith M. Lord

Corresponding author

Correspondence toEdith M. Lord.

Rights and permissions

About this article

Cite this article

Sorensen, E.W., Gerber, S.A., Sedlacek, A.L. et al. Omental immune aggregates and tumor metastasis within the peritoneal cavity.Immunol Res 45, 185–194 (2009). https://doi.org/10.1007/s12026-009-8100-2

Download citation

Keywords