Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13:539–550 PubMedCAS Google Scholar
Hahnen E, Hauke J, Trankle C, Eyupoglu IY, Wirth B, Blumcke I (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17:169–184 PubMedCAS Google Scholar
Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64 PubMedCAS Google Scholar
Morrison BE, Majdzadeh N, D'Mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269 PubMedCAS Google Scholar
Marsh JL, Lukacsovich T, Thompson LM (2009) Animal models of polyglutamine diseases and therapeutic approaches. J Biol Chem 284:7431–7435 PubMedCAS Google Scholar
Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868 PubMedCAS Google Scholar
Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644 PubMedCAS Google Scholar
Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402 PubMedCAS Google Scholar
Carelli RM (2002) The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev 1:281–296 PubMed Google Scholar
Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468 PubMedCAS Google Scholar
Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177 PubMed Google Scholar
Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683 PubMedCAS Google Scholar
Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247 PubMedCAS Google Scholar
HsDCR G (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971–983 Google Scholar
Andrew SE et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4:398–403 PubMedCAS Google Scholar
Li JL et al (2006) Genome-wide significance for a modifier of age at neurological onset in Huntington's disease at 6q23–24: the HD MAPS study. BMC Med Genet 7:71 PubMed Google Scholar
Rosenblatt A, Abbott MH, Gourley LM, Troncoso JC, Margolis RL, Brandt J, Ross CA (2003) Predictors of neuropathological severity in 100 patients with Huntington's disease. Ann Neurol 54:488–493 PubMed Google Scholar
Bamford KA, Caine ED, Kido DK, Plassche WM, Shoulson I (1989) Clinical–pathologic correlation in Huntington's disease: a neuropsychological and computed tomography study. Neurology 39:796–801 PubMedCAS Google Scholar
Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease. Neurosci Lett 133:257–261 PubMedCAS Google Scholar
Rosas HD et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620 PubMedCAS Google Scholar
Fennema-Notestine C et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995 PubMedCAS Google Scholar
Jeste DV, Barban L, Parisi J (1984) Reduced Purkinje cell density in Huntington's disease. Exp Neurol 85:78–86 PubMedCAS Google Scholar
Rodda RA (1981) Cerebellar atrophy in Huntington's disease. J Neurol Sci 50:147–157 PubMedCAS Google Scholar
Byers RK, Dodge JA (1967) Huntington's chorea in children. Report of four cases. Neurology 17:587–596 PubMedCAS Google Scholar
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79 PubMed Google Scholar
Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8:177–182 PubMedCAS Google Scholar
Koide R et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13 PubMedCAS Google Scholar
Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, Kanazawa I (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 19:99–103 Google Scholar
Ross CA, Becher MW, Colomer V, Engelender S, Wood JD, Sharp AH (1997) Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis and pathology. Brain Pathol 7:1003–1016 PubMedCAS Google Scholar
Takahashi H, Ohama E, Naito H, Takeda S, Nakashima S, Makifuchi T, Ikuta F (1988) Hereditary dentatorubral-pallidoluysian atrophy: clinical and pathologic variants in a family. Neurology 38:1065–1070 PubMedCAS Google Scholar
Riley BE, Orr HT (2006) Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 20:2183–2192 PubMedCAS Google Scholar
Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370 PubMed Google Scholar
Campuzano V et al (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427 PubMedCAS Google Scholar
Butler R, Bates GP (2006) Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 7:784–796 PubMedCAS Google Scholar
Helmlinger D, Tora L, Devys D (2006) Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet 22:562–570 PubMedCAS Google Scholar
Steffan JS et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743 PubMedCAS Google Scholar
Ferrante RJ et al (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington's disease. J Neurosci 24:10335–10342 PubMedCAS Google Scholar
Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci U S A 103:19176–19181 PubMedCAS Google Scholar
Stack EC et al (2007) Modulation of nucleosome dynamics in Huntington's disease. Hum Mol Genet 16:1164–1175 PubMedCAS Google Scholar
Freiman RN, Tjian R (2002) Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296:2149–2150 PubMed Google Scholar
Zhai W, Jeong H, Cui L, Krainc D, Tjian R (2005) In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 123:1241–1253 PubMedCAS Google Scholar
Benn CL, Sun T, Sadri-Vakili G, McFarland KN, DiRocco DP, Yohrling GJ, Clark TW, Bouzou B, Cha JH (2008) Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. J Neurosci 28:10720–10733 PubMedCAS Google Scholar
Cooper JR, Bloom FE, Roth RH (1991) Dopamine. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of neuropharmacology. Oxford University Press, Oxford, pp 285–337 Google Scholar
Stephens B et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132:741–754 PubMedCAS Google Scholar
Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67:e11 ArticlePubMed Google Scholar
Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184 PubMedCAS Google Scholar
Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274 PubMedCAS Google Scholar
Simunovic F, et al. (2008) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology_._ Brain. doi:10.1093/brain/awn323
Mirnics K, Levitt P, Lewis DA (2006) Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60:163–176 PubMedCAS Google Scholar
Thomas EA (2006) Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol 34:109–128 PubMedCAS Google Scholar
Yuferov V, Nielsen D, Butelman E, Kreek MJ (2005) Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol 10:101–118 PubMedCAS Google Scholar
Nicholas AP et al (2008) Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 106:486–494 PubMedCAS Google Scholar
Kumar A et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314 PubMedCAS Google Scholar
Levine AA, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH (2005) CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci U S A 102:19186–19191 PubMedCAS Google Scholar
Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749 PubMedCAS Google Scholar
Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723 PubMedCAS Google Scholar
Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Lindberg M, Oliveberg M, Marklund SL (2006) Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129:451–464 PubMed Google Scholar
Monani UR (2005) Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 48:885–896 PubMedCAS Google Scholar
Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636 PubMedCAS Google Scholar
Papadopoulos MC, Giffard RG, Bell BA (2000) An introduction to the changes in gene expression that occur after cerebral ischaemia. Br J Neurosurg 14:305–312 PubMedCAS Google Scholar
Read SJ et al (2001) Stroke genomics: approaches to identify, validate, and understand ischemic stroke gene expression. J Cereb Blood Flow Metab 21:755–778 PubMedCAS Google Scholar
Quina AS, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72:1563–1569 PubMedCAS Google Scholar
Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294 PubMedCAS Google Scholar
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45 PubMedCAS Google Scholar
Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459 PubMedCAS Google Scholar
An W (2007) Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 41:351–369 PubMed Google Scholar
Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552 PubMedCAS Google Scholar
Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435 PubMedCAS Google Scholar
Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755 PubMedCAS Google Scholar
Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120 PubMedCAS Google Scholar
Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75:487–497 PubMedCAS Google Scholar
Adcock IM, Ford P, Ito K, Barnes PJ (2006) Epigenetics and airways disease. Respir Res 7:21 PubMed Google Scholar
Lucio-Eterovic AK et al (2008) Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8:243 PubMed Google Scholar
Zhou X, Marks PA, Rifkind RA, Richon VM (2001) Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 98:10572–10577 PubMedCAS Google Scholar
Liu H, Hu Q, Kaufman A, D'Ercole AJ, Ye P (2008) Developmental expression of histone deacetylase 11 in the murine brain. J Neurosci Res 86:537–543 PubMedCAS Google Scholar
Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 31:47–58 PubMedCAS Google Scholar
Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A (2007) Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res 32:187–195 PubMedCAS Google Scholar
Hoshino M et al (2003) Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J Neurochem 87:257–267 PubMedCAS Google Scholar
Pandey UB et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863 PubMedCAS Google Scholar
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738 PubMedCAS Google Scholar
Iwata A, Riley BE, Johnston JA, Kopito RR (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292 PubMedCAS Google Scholar
Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet 17:3767–3775 PubMedCAS Google Scholar
Bates EA, Victor M, Jones AK, Shi Y, Hart AC (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26:2830–2838 PubMedCAS Google Scholar
Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784 PubMedCAS Google Scholar
Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528 PubMedCAS Google Scholar
Khan N et al (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589 PubMedCAS Google Scholar
Chou CJ, Herman DM, Gottesfeld JM (2008) Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J Biol Chem 283:35402–35409 PubMedCAS Google Scholar
Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2:551–558 PubMedCAS Google Scholar
Thomas EA et al (2008) The HDAC inhibitor, 4b, ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci U S A 105:15564–15569 PubMedCAS Google Scholar
Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K (2007) Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer 121:1138–1148 PubMedCAS Google Scholar
Hockly E et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 100:2041–2046 PubMedCAS Google Scholar
Ferrante RJ et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 23:9418–9427 PubMedCAS Google Scholar
Gardian G et al (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J Biol Chem 280:556–563 PubMedCAS Google Scholar
Hahnen E et al (2006) In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 98:193–202 PubMedCAS Google Scholar
Avila AM et al (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117:659–671 PubMedCAS Google Scholar
Minamiyama M et al (2004) Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 13:1183–1192 PubMedCAS Google Scholar
Ying M, Xu R, Wu X, Zhu H, Zhuang Y, Han M, Xu T (2006) Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 281:12580–12586 PubMedCAS Google Scholar
Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) Correction of frataxin deficiency in a GAA repeat knock-in mouse model for Friedreich ataxia by a specific histone deacetylase inhibitor. PLoS ONE 3:e1958 PubMed Google Scholar
Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, Crow JP, Beal MF (2006) Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 22:40–49 PubMedCAS Google Scholar
Ryu H et al (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93:1087–1098 PubMedCAS Google Scholar
Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF (2004) Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med 5:235–241 PubMedCAS Google Scholar
Pandey SC, Ugale R, Zhang H, Tang L, Prakash A (2008) Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 28:3729–3737 PubMedCAS Google Scholar
Romieu P, Host L, Gobaille S, Sandner G, Aunis D, Zwiller J (2008) Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28:9342–9348 PubMedCAS Google Scholar
Fontan-Lozano A, Romero-Granados R, Troncoso J, Munera A, Delgado-Garcia JM, Carrion AM (2008) Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 39:193–201 PubMedCAS Google Scholar
Thomas P, Vieta E (2008) Amisulpride plus valproate vs haloperidol plus valproate in the treatment of acute mania of bipolar I patients: a multicenter, open-label, randomized, comparative trial. Neuropsychiatr Dis Treat 4:675–686 PubMedCAS Google Scholar
Buckley PF (2008) Update on the treatment and management of schizophrenia and bipolar disorder. CNS Spectr 13:1–10 quiz 11–12 PubMed Google Scholar
Tremolizzo L et al (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57:500–509 PubMedCAS Google Scholar
Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901 PubMedCAS Google Scholar
Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, Leoni F, Moroni F, Chiarugi A (2006) Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 70:1876–1884 PubMedCAS Google Scholar
Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358–1367 PubMedCAS Google Scholar
Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 1226:181–191 PubMedCAS Google Scholar
Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A (2006) The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci U S A 103:1587–1592 PubMedCAS Google Scholar
Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Exp 5:245–253 Google Scholar
Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnstone RW (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:3697–3702 PubMedCAS Google Scholar
Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeki F, Kato M, Seki N, Saisho H (2004) Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J Hepatol 41:436–445 PubMedCAS Google Scholar
Schroeder TM, Nair AK, Staggs R, Lamblin AF, Westendorf JJ (2007) Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. BMC Genomics 8:362 PubMed Google Scholar