Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review (original) (raw)
Fichtner I, Slisow W, Gill J et al (2004) Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer 40:298–307 ArticleCASPubMed Google Scholar
Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250. ArticleCASPubMed Google Scholar
Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239 PubMed Google Scholar
Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431 ArticleCASPubMed Google Scholar
Sausville A, Burger AM (2006) Contribution of human tumor xenografts to anticancer drug development. Cancer Res 66:3351–3354 ArticleCASPubMed Google Scholar
Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337 ArticleCASPubMed Google Scholar
Shimosato Y, Kameya T, Nagai K et al (1976) Transplantation of human tumors in nude mice. J Natl Cancer Inst 56:1251–1260 CASPubMed Google Scholar
Fichtner I, Rolff J, Soong R et al (2008) Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14:6456–6468 ArticleCASPubMed Google Scholar
Rubio-Viqueira B, Jimeno A, Cusatis G et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661 ArticleCASPubMed Google Scholar
Perez-Soler R, Kemp B, Wu QP et al (2000) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6:4932–4938 CASPubMed Google Scholar
Huynh H, Soo KC, Chow PK et al (2006) Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res 12:4306–4314 ArticleCASPubMed Google Scholar
Wang Y, Xue H, Cutz JC et al (2005) An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest 85:1392–1404 ArticlePubMed Google Scholar
Shu Q, Wong KK, Su JM et al (2008) Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26:1414–1424 ArticlePubMed Google Scholar
Cutz JC, Guan J, Bayani J et al (2006) Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res 12: 4043–4054 ArticleCASPubMed Google Scholar
Kim MP, Evans DB, Wang H et al (2009) Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 4:1670–1680 ArticleCASPubMed Google Scholar
Visonneau S, Cesano A, Torosian MH et al (1997) Cell therapy of a highly invasive human breast carcinoma implanted in immunodeficient (SCID) mice. Clin Cancer Res 3:1491–1500 CASPubMed Google Scholar
Marangoni E, Vincent-Salomon A, Auger N et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13:3989–3998 ArticleCASPubMed Google Scholar
Beckhove P, Schütz F, Diel IJ et al (2003) Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer 105:444–453 ArticleCASPubMed Google Scholar
Priolo C, Agostini M, Vena N et al (2010) Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors. Am J Pathol. Am J Pathol 176:1901–1913 CAS Google Scholar
Zhao XM, Quan GB, Zhou GB et al (2007) Conventional freezing, straw, and open-pulled straw vitrification of mouse two pronuclear (2-PN) stage embryos. Anim Biotechnol 18:203–212 ArticleCASPubMed Google Scholar
Seki S, Mazur P (2008) Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod 79:727–737 ArticleCASPubMed Google Scholar
Bedaiwy MA, Hussein MR, Biscotti C et al (2006) Cryopreservation of intact human ovary with its vascular pedicle. Hum Reprod 21:3258–3269 ArticlePubMed Google Scholar
Bedaiwy MA, Falcone T et al (2004) Reduction of post-transplantation ischaemic injury: intact ovary freezing and transplantation. Hum Reprod 19:1242–1244 ArticlePubMed Google Scholar
Van Kempen LC, Ruiter DJ, van Muijen GN et al (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. EurJ Cell Biol 82:539–548 Article Google Scholar
Giovanella BC, Stehlin JS Jr, Shepard RC et al (1983) Correlation between response to chemotherapy of human tumors in patients and in nude mice. Cancer 52:1146–1152 ArticleCASPubMed Google Scholar
Sakakibara T, Xu Y, Bumpers HL et al (1996) Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. Cancer J Sci Am 2:291–300 CASPubMed Google Scholar
Loukopoulos P, Kanetaka K, Takamura M et al (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29:193–203 ArticleCASPubMed Google Scholar
Kolfschoten GM, Pinedo HM, Scheffer PG et al (2000) Development of a panel of 15 human ovarian cancer xenografts for drug screening and determination of the role of the glutathione detoxification system. Gynecol Oncol 76:362–368 ArticleCASPubMed Google Scholar
Press JZ, Kenyon JA, Xue H et al (2008) Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol 110:256–264 ArticleCASPubMed Google Scholar
Lee CH, Xue H, Sutcliffe M et al (2005) Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol 96:48–55 ArticlePubMed Google Scholar
Xu Y, Silver DF, Yang NP et al (1999) Characterization of human ovarian carcinomas in a SCID mouse model. Gynecol Oncol 72:161–170 ArticleCASPubMed Google Scholar
Angevin E, Glukhova L, Pavon C et al (1999) Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest 79:879–888 CASPubMed Google Scholar
Verschraegen CF, Hu W, Du Y et al (2003) Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Müllerian cancers. Clin Cancer Res 9:845–852 CASPubMed Google Scholar
Schmidt KF, Ziu M, Schmidt NO et al (2004) Volume reconstruction techniques improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas. J Neurooncol 68:207–215 ArticlePubMed Google Scholar
Verstijnen CP, Arends JW, Moerkerk P et al (1988) Culturing and xenografting of primary colorectal carcinoma cells: comparison of in vitro, and in vivo model and primary tumor. Anticancer Res 8:1193–1200 CASPubMed Google Scholar
Whiteford CC, Bilke S, Greer BT et al (2007) Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 67:32–40 ArticleCASPubMed Google Scholar
Wei JS, Greer BT, Westermann F et al (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 64:6883–6891 ArticleCASPubMed Google Scholar
Son CG, Bilke S, Davis S et al (2005) Database of mRNA gene expression profiles of multiple human organs. Genome Res 15:443–450 ArticleCASPubMed Google Scholar
Khanna C, Khan J, Nguyen P et al (2001) Metastasis associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61:3750–3759 CASPubMed Google Scholar
Hammer S, Sommer A, Fichtner I et al (2010) Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res 16:1452–1465 ArticleCASPubMed Google Scholar
Rajeshkumar NV, Tan AC, De Oliveira E et al (2009) Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res 15:4138–4146 ArticleCASPubMed Google Scholar
Maris JM, Courtright J, Houghton PJ et al (2008) Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer 50:581–587 ArticlePubMed Google Scholar
Langdon SP, Hendriks HR, Braakhuis BJ et al (1994) Preclinical phase II studies in human tumor xenografts: a European multicenter follow-up study. Ann Oncol 5:415–422 CASPubMed Google Scholar
Huynh H, Chow PK, Palanisamy N et al (2008) Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol 49:52–60 ArticleCASPubMed Google Scholar
Wang Z, Zhou J, Fan J et al (2008) Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 14:5124–5130 ArticleCASPubMed Google Scholar
Houghton PJ, Morton CL, Tucker C et al (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49:928–940 ArticlePubMed Google Scholar
Boven E, Winograd B, Berger DP et al (1992) Phase II preclinical drug screening in human tumor xenografts: a first European multicenter collaborative study. Cancer Res 52:5940–5947 CASPubMed Google Scholar
Kelland LR (2004) Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40: 827–836 ArticleCASPubMed Google Scholar
Visonneau S, Cesano A, Torosian MH et al (1998) Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am J Pathol 152:1299–1311 CASPubMed Google Scholar
Clarke R (1996) Animal models of breast cancer: their diversity and role in biomedical research. Breast Cancer Res Treat 39:1–6 ArticleCASPubMed Google Scholar
Fingert HJ, Chen Z, Mizrahi N et al (1987) Rapid growth of human cancer cells in a mouse model with fibrin clot subrenal capsule assay. Cancer Res 47:3824–3829 CASPubMed Google Scholar
Hoehn W, Schroeder FH, Reimann JF et al (1980) Human prostatic adenocarcinoma: some characteristics of a serially transplantable line in nude mice (PC 82). Prostate 1:95–104 ArticleCASPubMed Google Scholar
Céspedes MV, Casanova I, Parreño M et al (2006) Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 8:318–329 ArticlePubMed Google Scholar