Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2012) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11:97–112. doi:10.1007/s11101-011-9221-5 ArticleCAS Google Scholar
Ahmad M, Saleem S, Ahmad AS et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147 Article Google Scholar
Bhatnagar M, Sharma D, Salvi M (2009) Neuroprotective effects of Withania somnifera dunal: a possible mechanism. Neurochem Res 34:1975–1983. doi:10.1007/s11064-009-9987-7 Google Scholar
Chaudhuri KR, Martinez-Martin P, Brown RG et al (2007) The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord 22:1901–1911. doi:10.1002/mds.21596 Article Google Scholar
Choudhary MI, Nawaz SA, Ul-Haq Z et al (2005) Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 334:276–287 ArticleCAS Google Scholar
Chulet R, Pradhan P (2009) A review on rasayana. Pharmacogn Rev 3:229 Google Scholar
Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483. doi:10.1016/j.tips.2009.06.005 ArticleCAS Google Scholar
Dalpiaz A, Filosa R, de Caprariis P et al (2007) Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int J Pharm 336:133–139. doi:10.1016/j.ijpharm.2006.11.051 ArticleCAS Google Scholar
Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671 ArticleCAS Google Scholar
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95 ArticleCAS Google Scholar
Girish C, Muralidhara (2012) Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson’s disease. Neurotoxicology 33:444–456. doi:10.1016/j.neuro.2012.04.002 ArticleCAS Google Scholar
Gokul K, Manjunath MJ, Muralidhara (2012) Exploring the neuroprotective efficacy of Withania somnifera: a medicinal plant with diverse biological effects. RPMP Ethnomedicine and Therapeutic Validation 32:377–402 Google Scholar
Goldman JG, Stebbins GT, Bernard B et al (2012) Entorhinal cortex atrophy differentiates Parkinson’s disease patients with and without dementia. Mov Disord 27:727–734. doi:10.1002/mds.24938 Article Google Scholar
Gupta GL, Rana AC (2007) Withania somnifera (Ashwagandha): a review. Pharmacogn Rev 1:129 CAS Google Scholar
Guthenberg C, Alin P, Mannervik B (1985) Glutathione transferase from rat testis. Meth Enzymol 113:507–510 ArticleCAS Google Scholar
Heales SJR, Menzes A, Davey GP (2011) Depletion of glutathione does not affect electron transport chain complex activity in brain mitochondria: Implications for Parkinson disease and postmortem studies. Free Radic Biol Med 50:899–902. doi:10.1016/j.freeradbiomed.2010.11.032 ArticleCAS Google Scholar
Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 9:504–523 ArticleCAS Google Scholar
Hosamani R, Muralidhara (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 30:977–985. doi:10.1016/j.neuro.2009.08.012 ArticleCAS Google Scholar
Hosamani R, Muralidhara (2010) Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster. Indian J Biochem Biophys 47:75–82 CAS Google Scholar
Hosamani R, Ramesh SR, Muralidhara (2010) Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in Drosophila melanogaster supplemented with creatine. Neurochem Res 35:1402–1412. doi:10.1007/s11064-010-0198-z ArticleCAS Google Scholar
Kostyuk VA, Potapovich AI (1989) Superoxide–driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 19:1117–1124 CAS Google Scholar
Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971. doi:10.1038/sj.bjp.0706122 ArticleCAS Google Scholar
Kumar A, Kulkarni SK (2006) Protective effect of BR-16A, a polyherbal preparation against social isolation stress: possible GABAergic mechanism. Phytother Res 20:538–541. doi:10.1002/ptr.1873 Article Google Scholar
Kumar P, Kumar A (2009) Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J Med Food 12:591–600. doi:10.1089/jmf.2008.0028 ArticleCAS Google Scholar
Laurent SR, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246:382–390. doi:10.1016/j.neuroscience.2013.04.037 Article Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 CAS Google Scholar
Manjunath MJ, Muralidhara (2013) Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 13:43–56 ArticleCAS Google Scholar
Mokrasch LC, Teschke EJ (1984) Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem 140:506–509 ArticleCAS Google Scholar
Navarro A, Gomez C, López-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:R505–R511. doi:10.1152/ajpregu.00208.2003 ArticleCAS Google Scholar
Navarro A, Sánchez Del Pino MJ, Gómez C et al (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:R985–R992. doi:10.1152/ajpregu.00537.2001 ArticleCAS Google Scholar
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 ArticleCAS Google Scholar
Parihar MS, Hemnani T (2003) Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci 28:121–128 ArticleCAS Google Scholar
Prasad SN, Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy. Neurotoxicology 33:1254–1264. doi:10.1016/j.neuro.2012.07.006 ArticleCAS Google Scholar
Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Bueler H (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol Dis 40:82–92 ArticleCAS Google Scholar
Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481. doi:10.2478/s11658-007-0015-0 ArticleCAS Google Scholar
Santiago RM, Barbieiro J, Lima MMS et al (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 34:1104–1114. doi:10.1016/j.pnpbp.2010.06.004 ArticleCAS Google Scholar
Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764 CAS Google Scholar
Shinomol GK, Muralidhara (2008) Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. Neurotoxicology 29:948–957. doi:10.1016/j.neuro.2008.09.009 ArticleCAS Google Scholar
Spivey A (2011) Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ Health Perspect 119:A259. doi:10.1289/ehp.119-a259a Article Google Scholar
Sudati JH, Vieira FA, Pavin SS et al (2013) Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster. Neurotoxicology 37:118–126. doi:10.1016/j.neuro.2013.04.006 ArticleCAS Google Scholar
Swarnkar S, Singh S, Mathur R et al (2010) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular co-ordination in rats. Toxicology 272:17–22. doi:10.1016/j.tox.2010.03.019 ArticleCAS Google Scholar
Tohda C, Kuboyama T, Komatsu K (2000) Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport 11:1981–1985 ArticleCAS Google Scholar
Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509 ArticleCAS Google Scholar
Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods enzymol 233:182 ArticleCAS Google Scholar
Zhao J, Nakamura N, Hattori M et al (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765 ArticleCAS Google Scholar