v Eitzen U, Egensperger R, Kosel S, Grasbon-Frodl EM, Imai Y, Bise K, Kohsaka S, Mehraein P, Graeber MB: Microglia and the development of spongiform change in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 1998, 57(3):246–256. CASPubMed Google Scholar
Mosher KI, Wyss-Coray T: Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 2014, 88(4):594–604. doi:10.1016/j.bcp.2014.01.008 CASPubMedPubMed Central Google Scholar
Prokop S, Miller KR, Heppner FL: Microglia actions in Alzheimer’s disease. Acta Neuropathol 2013, 126(4):461–477. CASPubMed Google Scholar
Aguzzi A, Barres BA, Bennett ML: Microglia: scapegoat, saboteur, or something else? Science 2013, 339(6116):156–161. doi:10.1126/science.1227901 CASPubMedPubMed Central Google Scholar
Biber K, Owens T, Boddeke E: What is microglia neurotoxicity (Not)? Glia 2014, 62(6):841–854. doi:10.1002/glia.22654 PubMed Google Scholar
Derecki NC, Katzmarski N, Kipnis J, Meyer-Luehmann M: Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathol 2014, 128(3):333–345. doi:10.1007/s00401–014–1321-z PubMedPubMed Central Google Scholar
Streit WJ, Sammons NW, Kuhns AJ, Sparks DL: Dystrophic microglia in the aging human brain. Glia 2004, 45(2):208–212. doi:10.1002/glia.10319 PubMed Google Scholar
Streit WJ: Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 2004, 77(1):1–8. doi:10.1002/jnr.20093 CASPubMed Google Scholar
Graeber MB: Changing face of microglia. Science 2010, 330(6005):783–788. doi:10.1126/science.1190929 CASPubMed Google Scholar
Kettenmann H, Kirchhoff F, Verkhratsky A: Microglia: new roles for the synaptic stripper. Neuron 2013, 77(1):10–18. doi:10.1016/j.neuron.2012.12.023 CASPubMed Google Scholar
Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002, 40(2):133–139. doi:10.1002/glia.10154 PubMed Google Scholar
Hellwig S, Heinrich A, Biber K: The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci 2013, 7: 71. doi:10.3389/fncel.2013.00071 PubMedPubMed Central Google Scholar
Booth PL, Thomas WE: Evidence for motility and pinocytosis in ramified microglia in tissue culture. Brain Res 1991, 548(1-2):163–171. CASPubMed Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308(5726):1314–1318. doi:10.1126/science.1110647 CASPubMed Google Scholar
Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M: Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 2014, 13(1):60–69. doi:10.1111/acel.12149 CASPubMed Google Scholar
Streit WJ, Walter SA, Pennell NA: Reactive microgliosis. Prog Neurobiol 1999, 57(6):563–581. CASPubMed Google Scholar
Raj DD, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM, de Waard MC, van der Pluijm I, Brandt R, Kreft KL, Laman JD, de Haan G, Biber KP, Hoeijmakers JH, Eggen BJ, Boddeke HW: Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 2014, 35(9):2147–2160. doi:10.1016/j.neurobiolaging.2014.03.025 CASPubMed Google Scholar
Norden DM, Godbout JP: Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013, 39(1):19–34. doi:10.1111/j.1365–2990.2012.01306.x CASPubMedPubMed Central Google Scholar
Perry VH: Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010, 120(3):277–286. doi:10.1007/s00401–010–0722-x CASPubMed Google Scholar
Sheng JG, Mrak RE, Griffin WS: Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol 1997, 94(1):1–5. CASPubMed Google Scholar
Streit WJ, Graeber MB, Kreutzberg GW: Functional plasticity of microglia: a review. Glia 1988, 1(5):301–307. doi:10.1002/glia.440010502 CASPubMed Google Scholar
Boche D, Perry VH, Nicoll JA: Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 2013, 39(1):3–18. doi:10.1111/nan.12011 CASPubMed Google Scholar
Streit WJ, Graeber MB: Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm. Glia 1993, 7(1):68–74. doi:10.1002/glia.440070112 CASPubMed Google Scholar
Gertig U, Hanisch UK: Microglial diversity by responses and responders. Front Cell Neurosci 2014, 8: 101. doi:10.3389/fncel.2014.00101 PubMedPubMed Central Google Scholar
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140(6):918–934. doi:10.1016/j.cell.2010.02.016 CASPubMedPubMed Central Google Scholar
Smith AM, Dragunow M: The human side of microglia. Trends Neurosci 2014, 37(3):125–135. doi:10.1016/j.tins.2013.12.001 CASPubMed Google Scholar
Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8(1):57–69. doi:10.1038/nrn2038 CASPubMed Google Scholar
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91(2):461–553. doi:10.1152/physrev.00011.2010 CASPubMed Google Scholar
Streit WJ: Microglial activation and neuroinflammation in Alzheimer’s disease: a critical examination of recent history. Front Aging Neurosci 2010, 2: 22. doi:10.3389/fnagi.2010.00022 PubMedPubMed Central Google Scholar
Howcroft TK, Campisi J, Louis GB, Smith MT, Wise B, Wyss-Coray T, Augustine AD, McElhaney JE, Kohanski R, Sierra F: The role of inflammation in age-related disease. Aging 2013, 5(1):84–93. CASPubMedPubMed Central Google Scholar
Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J: Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 2008, 5: 51. doi:10.1186/1742–2094–5-51 PubMedPubMed Central Google Scholar
Veerhuis R: Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr Alzheimer Res 2011, 8(1):34–58. CASPubMed Google Scholar
Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S: Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007, 128(1):92–105. doi:10.1016/j.mad.2006.11.016 CASPubMed Google Scholar
Overmyer M, Helisalmi S, Soininen H, Laakso M, Riekkinen P Sr, Alafuzoff I: Reactive microglia in aging and dementia: an immunohistochemical study of postmortem human brain tissue. Acta Neuropathol 1999, 97(4):383–392. CASPubMed Google Scholar
Rogers J, Luber-Narod J, Styren SD, Civin WH: Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988, 9(4):339–349. CASPubMed Google Scholar
Sheng JG, Mrak RE, Griffin WS: Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 1998, 95(3):229–234. CASPubMed Google Scholar
Morioka T, Kalehua AN, Streit WJ: Progressive expression of immunomolecules on microglial cells in rat dorsal hippocampus following transient forebrain ischemia. Acta Neuropathol 1992, 83(2):149–157. CASPubMed Google Scholar
Rao K, Lund RD: Optic nerve degeneration induces the expression of MHC antigens in the rat visual system. J Comp Neurol 1993, 336(4):613–627. doi:10.1002/cne.903360413 CASPubMed Google Scholar
Popovich PG, Streit WJ, Stokes BT: Differential expression of MHC class II antigen in the contused rat spinal cord. J Neurotrauma 1993, 10(1):37–46. CASPubMed Google Scholar
Streit WJ, Graeber MB, Kreutzberg GW: Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 1989, 105(2):115–126. CASPubMed Google Scholar
Giulian D, Chen J, Ingeman JE, George JK, Noponen M: The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 1989, 9(12):4416–4429. CASPubMed Google Scholar
Higgins GA, Olschowka JA: Induction of interleukin-1 beta mRNA in adult rat brain. Brain Res Mol Brain Res 1991, 9(1-2):143–148. CASPubMed Google Scholar
Perry VH, Matyszak MK, Fearn S: Altered antigen expression of microglia in the aged rodent CNS. Glia 1993, 7(1):60–67. doi:10.1002/glia.440070111 CASPubMed Google Scholar
Ogura K, Ogawa M, Yoshida M: Effects of ageing on microglia in the normal rat brain: immunohistochemical observations. Neuroreport 1994, 5(10):1224–1226. CASPubMed Google Scholar
Sheffield LG, Berman NE: Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol Aging 1998, 19(1):47–55. CASPubMed Google Scholar
Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE: The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 1999, 89(3):687–699. CASPubMed Google Scholar
Wong AM, Patel NV, Patel NK, Wei M, Morgan TE, de Beer MC, de Villiers WJ, Finch CE: Macrosialin increases during normal brain aging are attenuated by caloric restriction. Neurosci Lett 2005, 390(2):76–80. doi:10.1016/j.neulet.2005.07.058 CASPubMed Google Scholar
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, et al.: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21(3):383–421. CASPubMedPubMed Central Google Scholar
Good PF, Werner P, Hsu A, Olanow CW, Perl DP: Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 1996, 149(1):21–28. CASPubMedPubMed Central Google Scholar
Harman D: Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956, 11(3):298–300. CASPubMed Google Scholar
Morgan TE, Wong AM, Finch CE: Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip Top Gerontol 2007, 35: 83–97. doi:10.1159/000096557 CASPubMed Google Scholar
Gehrmann J, Mies G, Bonnekoh P, Banati R, Iijima T, Kreutzberg GW, Hossmann KA: Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol 1993, 3(1):11–17. CASPubMed Google Scholar
Wilson MA, Molliver ME: Microglial response to degeneration of serotonergic axon terminals. Glia 1994, 11(1):18–34. doi:10.1002/glia.440110105 CASPubMed Google Scholar
Vaughan DW, Peters A: Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J Neurocytol 1974, 3(4):405–429. CASPubMed Google Scholar
Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT: Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 1998, 152(1):74–87. doi:10.1006/exnr.1998.6835 CASPubMed Google Scholar
Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ: Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2012, 33(1):195.e1–195.e12. doi:10.1016/j.neurobiolaging.2010.05.008 CAS Google Scholar
Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K: Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007, 55(4):412–424. doi:10.1002/glia.20468 PubMed Google Scholar
Ye SM, Johnson RW: Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 1999, 93(1-2):139–148. CASPubMed Google Scholar
Campisi J, d'Adda di Fagagna F: Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 8(9):729–740. doi:10.1038/nrm2233 CASPubMed Google Scholar
Coppe JP, Desprez PY, Krtolica A, Campisi J: The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010, 5: 99–118. doi:10.1146/annurev-pathol-121808–102144 CASPubMedPubMed Central Google Scholar
Hochberg FH, Miller DC: Primary central nervous system lymphoma. J Neurosurg 1988, 68(6):835–853. doi:10.3171/jns.1988.68.6.0835 CASPubMed Google Scholar
Conde JR, Streit WJ: Effect of aging on the microglial response to peripheral nerve injury. Neurobiol Aging 2006, 27(10):1451–1461. doi:10.1016/j.neurobiolaging.2005.07.012 CASPubMed Google Scholar
Miller KR, Streit WJ: The effects of aging, injury and disease on microglial function: a case for cellular senescence. Neuron Glia Biol 2007, 3(3):245–253. doi:10.1017/S1740925X08000136 PubMed Google Scholar
Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB: Progressive dendritic changes in aging human cortex. Exp Neurol 1975, 47(3):392–403. CASPubMed Google Scholar
Del Rio-Hortega P: Microglia. In Cytology and Cellular Pathology of the Nervous System. Edited by: Penfield W. Hoeber, New York; 1932:482–534. Google Scholar
Hickey WF, Kimura H: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239(4837):290–292. CASPubMed Google Scholar
Lawson LJ, Perry VH, Gordon S: Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992, 48(2):405–415. CASPubMed Google Scholar
Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U: Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001, 7(12):1356–1361. doi:10.1038/nm1201–1356 CASPubMed Google Scholar
Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007, 10(12):1544–1553. doi:10.1038/nn2015 CASPubMed Google Scholar
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F: A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336(6077):86–90. doi:10.1126/science.1219179 CASPubMed Google Scholar
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330(6005):841–845. doi:10.1126/science.1194637 CASPubMedPubMed Central Google Scholar
Oehmichen M, Huber H: Reactive microglia with membrane features of mononuclear phagocytes. J Neuropathol Exp Neurol 1976, 35(1):30–39. CASPubMed Google Scholar
Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S: Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 1998, 57(1):1–9. CASPubMed Google Scholar
Gehrmann J, Banati RB, Kreutzberg GW: Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 1993, 48(2):189–198. CASPubMed Google Scholar
Hayes GM, Woodroofe MN, Cuzner ML: Microglia are the major cell type expressing MHC class II in human white matter. J Neurol Sci 1987, 80(1):25–37. CASPubMed Google Scholar
Mattiace LA, Davies P, Dickson DW: Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol 1990, 136(5):1101–1114. CASPubMedPubMed Central Google Scholar
Sedgwick JD, Schwender S, Gregersen R, Dorries R, ter Meulen V: Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med 1993, 177(4):1145–1152. CASPubMed Google Scholar
Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B: Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: morphometric study and review of the literature. Folia Neuropathol 2012, 50(1):74–84. CASPubMed Google Scholar
Samorajski T: How the human brain responds to aging. J Am Geriatr Soc 1976, 24(1):4–11. CASPubMed Google Scholar
Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson MK: Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 1992, 13(1):179–189. CASPubMed Google Scholar
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992, 42(3 Pt 1):631–639. CASPubMed Google Scholar
Grober E, Dickson D, Sliwinski MJ, Buschke H, Katz M, Crystal H, Lipton RB: Memory and mental status correlates of modified Braak staging. Neurobiol Aging 1999, 20(6):573–579. CASPubMed Google Scholar
Riley KP, Snowdon DA, Markesbery WR: Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 2002, 51(5):567–577. PubMed Google Scholar
Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82(4):239–259. CASPubMed Google Scholar
DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990, 27(5):457–464. doi:10.1002/ana.410270502 CASPubMed Google Scholar
Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297(5580):353–356. doi:10.1126/science.1072994 CASPubMed Google Scholar
Rogers J, Strohmeyer R, Kovelowski CJ, Li R: Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 2002, 40(2):260–269. PubMed Google Scholar
Filiou MD, Arefin AS, Moscato P, Graeber MB: `Neuroinflammation’ differs categorically from inflammation: transcriptomes of Alzheimer’s disease, Parkinson’s disease, schizophrenia and inflammatory diseases compared. Neurogenetics 2014, 15(3):201–212. doi:10.1007/s10048–014–0409-x CASPubMed Google Scholar
Braak H, Del Tredici K: The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 2011, 121(2):171–181. doi:10.1007/s00401–010–0789–4 PubMed Google Scholar
Braak H, Thal DR, Ghebremedhin E, Del Tredici K: Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011, 70(11):960–969. doi:10.1097/NEN.0b013e318232a379 CASPubMed Google Scholar
Streit WJ, Braak H, Xue QS, Bechmann I: Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 2009, 118(4):475–485. doi:10.1007/s00401–009–0556–6 PubMedPubMed Central Google Scholar
Halliday GM, Shepherd CE, McCann H, Reid WG, Grayson DA, Broe GA, Kril JJ: Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch Neurol 2000, 57(6):831–836. CASPubMed Google Scholar
Arvanitakis Z, Grodstein F, Bienias JL, Schneider JA, Wilson RS, Kelly JF, Evans DA, Bennett DA: Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology 2008, 70(23):2219–2225. CASPubMed Google Scholar
Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, Craft S, Evans D, Green R, Mullan M: Cognitive function over time in the Alzheimer’s disease anti-inflammatory prevention trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 2008, 65(7):896–905. doi:10.1001/archneur.2008.65.7.nct70006 PubMed Google Scholar
Streit WJ, Xue QS, Braak H, del Tredici K: Presence of severe neuroinflammation does not intensify neurofibrillary degeneration in human brain. Glia 2014, 62(1):96–105. doi:10.1002/glia.22589 PubMed Google Scholar
Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM: Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 1998, 152(1):307–317. CASPubMedPubMed Central Google Scholar
Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT: APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997, 56(9):965–973. CASPubMed Google Scholar
Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT: Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 1997, 17(18):7053–7059. CASPubMed Google Scholar
Xue QS, Streit WJ: Microglial pathology in Down syndrome. Acta Neuropathol 2011, 122(4):455–466. doi:10.1007/s00401–011–0864–5 CASPubMed Google Scholar
Yang F, Sun X, Beech W, Teter B, Wu S, Sigel J, Vinters HV, Frautschy SA, Cole GM: Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. Am J Pathol 1998, 152(2):379–389. CASPubMedPubMed Central Google Scholar
Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM: Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 1995, 89(1):35–41. CASPubMed Google Scholar
Jellinger KA, Stadelmann CH: The enigma of cell death in neurodegenerative disorders. J Neural Transm Suppl 2000, 60: 21–36. PubMed Google Scholar
Halliday GM, Stevens CH: Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 2011, 26(1):6–17. doi:10.1002/mds.23455 PubMed Google Scholar
Lee JK, Tran T, Tansey MG: Neuroinflammation in Parkinson’s disease. J Neuroimmune Pharmacol 2009, 4(4):419–429. doi:10.1007/s11481–009–9176–0 PubMedPubMed Central Google Scholar
Qian L, Flood PM, Hong JS: Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 2010, 117(8):971–979. doi:10.1007/s00702–010–0428–1 CASPubMedPubMed Central Google Scholar
Mrak RE, Griffin WS: Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol 2007, 66(8):683–686. doi:10.1097/nen.0b013e31812503e1 CASPubMed Google Scholar
McGeer PL, McGeer EG: Glial reactions in Parkinson’s disease. Mov Disord 2008, 23(4):474–483. doi:10.1002/mds.21751 PubMed Google Scholar
Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB: Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2005, 2: 14. doi:10.1186/1742–2094–2-14 PubMedPubMed Central Google Scholar
Graeber MB, Streit WJ: Microglia: biology and pathology. Acta Neuropathol 2010, 119(1):89–105. doi:10.1007/s00401–009–0622–0 PubMed Google Scholar
Yokoyama H, Uchida H, Kuroiwa H, Kasahara J, Araki T: Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease. Neurol Sci 2011, 32(1):1–7. doi:10.1007/s10072–010–0424–0 CASPubMed Google Scholar
Depboylu C, Schafer MK, Arias-Carrion O, Oertel WH, Weihe E, Hoglinger GU: Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol 2011, 70(2):125–132. doi:10.1097/NEN.0b013e31820805b9 CASPubMed Google Scholar
Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132(Pt 2):288–295. doi:10.1093/brain/awn109 CASPubMed Google Scholar
Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH: Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 2007, 114(4):419–424. doi:10.1007/s00401–007–0250–5 PubMed Google Scholar
Cardenas H, Bolin LM: Compromised reactive microgliosis in MPTP-lesioned IL-6 KO mice. Brain Res 2003, 985(1):89–97. CASPubMed Google Scholar
Cho BP, Song DY, Sugama S, Shin DH, Shimizu Y, Kim SS, Kim YS, Joh TH: Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 2006, 53(1):92–102. doi:10.1002/glia.20265 PubMed Google Scholar
Cicchetti F, Drouin-Ouellet J, Gross RE: Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 2009, 30(9):475–483. doi:10.1016/j.tips.2009.06.005 CASPubMed Google Scholar
Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002, 81(6):1285–1297. CASPubMed Google Scholar
Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP: Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 2005, 8(1-2):25–50. CASPubMed Google Scholar
Sherer TB, Betarbet R, Kim JH, Greenamyre JT: Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 2003, 341(2):87–90. CASPubMed Google Scholar
Rozemuller AJ, Eikelenboom P, Theeuwes JW, Jansen Steur EN, de Vos RA: Activated microglial cells and complement factors are unrelated to cortical Lewy bodies. Acta Neuropathol 2000, 100(6):701–708. CASPubMed Google Scholar
Iseki E, Marui W, Akiyama H, Ueda K, Kosaka K: Degeneration process of Lewy bodies in the brains of patients with dementia with Lewy bodies using alpha-synuclein-immunohistochemistry. Neurosci Lett 2000, 286(1):69–73. CASPubMed Google Scholar
Mackenzie IR: Activated microglia in dementia with Lewy bodies. Neurology 2000, 55(1):132–134. CASPubMed Google Scholar
Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y: Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol 2005, 109(2):141–150. doi:10.1007/s00401–004–0919-y CASPubMed Google Scholar
Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D: Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989, 24(3):173–182. CASPubMed Google Scholar
Kaneko Y, Kitamoto T, Tateishi J, Yamaguchi K: Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol 1989, 79: 129–136. CASPubMed Google Scholar
Head E, Garzon-Rodriguez W, Johnson JK, Lott IT, Cotman CW, Glabe C: Oxidation of Abeta and plaque biogenesis in Alzheimer’s disease and Down syndrome. Neurobiol Dis 2001, 8(5):792–806. doi:10.1006/nbdi.2001.0431 CASPubMed Google Scholar
Perlmutter LS, Barron E, Chui HC: Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett 1990, 119(1):32–36. CASPubMed Google Scholar
Bieschke J, Zhang Q, Powers ET, Lerner RA, Kelly JW: Oxidative metabolites accelerate Alzheimer’s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 2005, 44(13):4977–4983. doi:10.1021/bi0501030 CASPubMed Google Scholar
Dyrks T, Dyrks E, Hartmann T, Masters C, Beyreuther K: Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol Chem 1992, 267(25):18210–18217. CASPubMed Google Scholar
Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ: Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 2007, 10(1):61–74. doi:10.1089/rej.2006.9096 CASPubMed Google Scholar
Korotzer AR, Pike CJ, Cotman CW: beta-Amyloid peptides induce degeneration of cultured rat microglia. Brain Res 1993, 624(1-2):121–125. CASPubMed Google Scholar
Grundke-Iqbal I, Fleming J, Tung YC, Lassmann H, Iqbal K, Joshi JG: Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol 1990, 81(2):105–110. CASPubMed Google Scholar
Smith MA, Perry G: Free radical damage, iron, and Alzheimer’s disease. J Neurol Sci 1995, 134(Suppl):92–94. PubMed Google Scholar
LeVine SM: Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res 1997, 760(1-2):298–303. CASPubMed Google Scholar
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR: Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998, 158(1):47–52. CASPubMed Google Scholar
Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, Fraser G, Kesler S, Levin SM, Lucey B, Morris MC, Squitti R: Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging 2014, 35(Suppl 2):S74-S78. doi:10.1016/j.neurobiolaging.2014.03.033 PubMed Google Scholar
Lopes KO, Sparks DL, Streit WJ: Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia 2008, 56(10):1048–1060. doi:10.1002/glia.20678 PubMed Google Scholar
Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G: Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 2007, 55(10):1074–1084. doi:10.1002/glia.20526 PubMed Google Scholar
Greenough MA, Camakaris J, Bush AI: Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 2013, 62(5):540–555. doi:10.1016/j.neuint.2012.08.014 CASPubMed Google Scholar
Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MB: Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 1990, 2(4):327–340. CASPubMed Google Scholar
Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Nakamura M, Nunomura A, Perry G: Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 2010, 19(1):363–372. doi:10.3233/JAD-2010–1239 PubMedPubMed Central Google Scholar
Xue QS, Yang C, Hoffman PM, Streit WJ: Microglial response to murine leukemia virus-induced encephalopathy is a good indicator of neuronal perturbations. Brain Res 2010, 1319: 131–141. doi:10.1016/j.brainres.2009.12.089 CASPubMed Google Scholar
Prasad A, Xue QS, Sankar V, Nishida T, Shaw G, Streit WJ, Sanchez JC: Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 2012, 9(5):056015. doi:10.1088/1741–2560/9/5/056015 PubMed Google Scholar
Flugel A, Bradl M, Kreutzberg GW, Graeber MB: Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 2001, 66(1):74–82. doi:10.1002/jnr.1198 CASPubMed Google Scholar
Lassmann H, Schmied M, Vass K, Hickey WF: Bone marrow derived elements and resident microglia in brain inflammation. Glia 1993, 7(1):19–24. CASPubMed Google Scholar
Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006, 49: 489–502. CASPubMed Google Scholar
Wirenfeldt M, Dissing-Olesen L, Anne Babcock A, Nielsen M, Meldgaard M, Zimmer J, Azcoitia I, Leslie RG, Dagnaes-Hansen F, Finsen B: Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol 2007, 171(2):617–631. CASPubMedPubMed Central Google Scholar
Prinz M, Priller J, Sisodia SS, Ransohoff RM: Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 2011, 14(10):1227–1235. doi:10.1038/nn.2923 CASPubMed Google Scholar
Iadecola C: The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 2010, 120(3):287–296. doi:10.1007/s00401–010–0718–6 PubMedPubMed Central Google Scholar
Fotuhi M, Hachinski V, Whitehouse PJ: Changing perspectives regarding late-life dementia. Nat Rev Neurol 2009, 5(12):649–658. doi:10.1038/nrneurol.2009.175 PubMed Google Scholar
Serrano-Pozo A, Gomez-Isla T, Growdon JH, Frosch MP, Hyman BT: A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am J Pathol 2013, 182(6):2332–2344. doi:10.1016/j.ajpath.2013.02.031 CASPubMedPubMed Central Google Scholar
Baron R, Babcock AA, Nemirovsky A, Finsen B, Monsonego A: Accelerated microglial pathology is associated with Abeta plaques in mouse models of Alzheimer’s disease. Aging Cell 2014, 13(4):584–595. doi:10.1111/acel.12210 CASPubMedPubMed Central Google Scholar
Huang D, Wujek J, Kidd G, He TT, Cardona A, Sasse ME, Stein EJ, Kish J, Tani M, Charo IF, Proudfoot AE, Rollins BJ, Handel T, Ransohoff RM: Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 2005, 19(7):761–772. doi:10.1096/fj.04–3104com CASPubMed Google Scholar
Fendrick SE, Xue QS, Streit WJ: Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene. J Neuroinflammation 2007, 4: 9. doi:10.1186/1742–2094–4-9 PubMedPubMed Central Google Scholar
Michaels J, Price RW, Rosenblum MK: Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: proliferation, infection and fusion. Acta Neuropathol 1988, 76(4):373–379. CASPubMed Google Scholar
Johnson EA, Dao TL, Guignet MA, Geddes CE, Koemeter-Cox AI, Kan RK: Increased expression of the chemokines CXCL1 and MIP-1alpha by resident brain cells precedes neutrophil infiltration in the brain following prolonged soman-induced status epilepticus in rats. J Neuroinflammation 2011, 8: 41. doi:10.1186/1742–2094–8-41 CASPubMedPubMed Central Google Scholar
Streit WJ, Xue QS: Microglial senescence. CNS Neurol Disord Drug Targets 2013, 12(6):763–767. CASPubMed Google Scholar
Fellner L, Jellinger KA, Wenning GK, Stefanova N: Glial dysfunction in the pathogenesis of alpha-synucleinopathies: emerging concepts. Acta Neuropathol 2011, 121(6):675–693. doi:10.1007/s00401–011–0833-z CASPubMedPubMed Central Google Scholar
Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiappelli F, Bernard G: Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2005, 7(3):221–232. discussion 255-262 CASPubMed Google Scholar
Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL: Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 2013, 8(4):e60921. doi:10.1371/journal.pone.0060921 CASPubMedPubMed Central Google Scholar
Hickman SE, Allison EK, El Khoury J: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008, 28(33):8354–8360. doi:10.1523/JNEUROSCI.0616–08.2008 CASPubMedPubMed Central Google Scholar
Budka H: Human immunodeficiency virus (HIV)-induced disease of the central nervous system: pathology and implications for pathogenesis. Acta Neuropathol 1989, 77(3):225–236. CASPubMed Google Scholar
Mariani MM, Kielian T: Microglia in infectious diseases of the central nervous system. J Neuroimmune Pharmacol 2009, 4(4):448–461. doi:10.1007/s11481–009–9170–6 PubMedPubMed Central Google Scholar
Anthony IC, Bell JE: The Neuropathology of HIV/AIDS. Int Rev Psychiatry 2008, 20(1):15–24. doi:10.1080/09540260701862037 CASPubMed Google Scholar