API Reference — llama-stack documentation (original) (raw)
- Llama Stack
- Quickstart
- Detailed Tutorial
- Why Llama Stack?
- Core Concepts
- OpenAI API Compatibility
- Providers Overview
- External Providers
- Agents
- DatasetIO
- Eval
- Inference
- Post Training
* Post Training Providers
* External Providers
* HuggingFace SFTTrainer
* TorchTune
* NVIDIA NEMO - Safety
- Scoring
- Telemetry
- Tool Runtime
- Vector IO
* Vector IO Providers
* External Providers
* Faiss
* SQLite-Vec
* Chroma
* Postgres PGVector
* Qdrant
* Milvus
* Weaviate
- Distributions Overview
- Using Llama Stack as a Library
* Setup Llama Stack without a Server - Configuring a “Stack”
* Providers
* Resources
* Server Configuration
* Authentication Configuration
* Quota Configuration
* Extending to handle Safety - Available List of Distributions
* Selection of a Distribution / Template
* Distribution Details
* On-Device Distributions - Kubernetes Deployment Guide
* Prerequisites
* Deploying Llama Stack Server in Kubernetes
* Verifying the Deployment - Build your own Distribution
* Setting your log level
* Llama Stack Build
* Running your Stack server
* Listing Distributions
* Removing a Distribution
* Troubleshooting
- Using Llama Stack as a Library
- Building AI Applications (Examples)
- Retrieval Augmented Generation (RAG)
* Setting up Vector DBs
* Ingesting Documents
* Using Precomputed Embeddings
* Retrieval
* Using the RAG Tool
* Building RAG-Enhanced Agents
* Unregistering Vector DBs
* Appendix
* More RAGDocument Examples - Agents
* Core Concepts
* 1. Agent Configuration
* 2. Sessions
* 3. Turns
* Non-Streaming
* 4. Steps
* Agent Execution Loop - Agent Execution Loop
* Steps in the Agent Workflow
* Agent Execution Loop Example - Tools
* Server-side vs. client-side tool execution
* Server-side tools
* Model Context Protocol (MCP)
* Using Remote MCP Servers
* Running your own MCP server
* Adding Custom (Client-side) Tools
* Tool Invocation
* Listing Available Tools
* Simple Example 2: Using an Agent with the Web Search Tool
* Simple Example3: Using an Agent with the WolframAlpha Tool - Evaluations
* Application Evaluation
* Building a Search Agent
* Query Agent Execution Steps
* Evaluate Agent Responses - Telemetry
* Events
* Spans and Traces
* Sinks
* Providers
* Meta-Reference Provider
* Configuration
* Jaeger to visualize traces
* Querying Traces Stored in SQLite - Safety Guardrails
- Retrieval Augmented Generation (RAG)
- Llama Stack Playground
- Contributing to Llama-Stack
- Discussions -> Issues -> Pull Requests
- Contributor License Agreement (“CLA”)
- Issues
- Set up your development environment
- Pre-commit Hooks
- Running tests
- Adding a new dependency to the project
- Coding Style
- Common Tasks
* Using llama stack build
* Updating Provider Configurations
* Building the Documentation
* Update API Documentation - License
* Adding a New API Provider
* Testing the Provider
* Submitting Your PR
- References
- API Reference
- Python SDK Reference
* Shared Types
* Toolgroups
* Tools
* ToolRuntime
* RagTool
* Agents
* Session
* Steps
* Turn
* BatchInference
* Datasets
* Eval
* Jobs
* Inspect
* Inference
* VectorIo
* VectorDBs
* Models
* PostTraining
* Job
* Providers
* Routes
* Safety
* Shields
* SyntheticDataGeneration
* Telemetry
* Datasetio
* Scoring
* ScoringFunctions
* Benchmarks - llama (server-side) CLI Reference
* Installation
* llama subcommands
* Sample Usage
* Downloading models
* Downloading from Meta
* Downloading from Hugging Face
* List the downloaded models
* Understand the models
* Sample Usage
* Describe
* Prompt Format
* Remove model - llama (client-side) CLI Reference
* Basic Commands
* llama-stack-client
* llama-stack-client configure
* llama-stack-client providers list
* Model Management
* llama-stack-client models list
* llama-stack-client models get
* llama-stack-client models register
* llama-stack-client models update
* llama-stack-client models delete
* Vector DB Management
* llama-stack-client vector_dbs list
* llama-stack-client vector_dbs register
* llama-stack-client vector_dbs unregister
* Shield Management
* llama-stack-client shields list
* llama-stack-client shields register
* Eval Task Management
* llama-stack-client benchmarks list
* llama-stack-client benchmarks register
* Eval execution
* llama-stack-client eval run-benchmark
* llama-stack-client eval run-scoring
* Tool Group Management
* llama-stack-client toolgroups list
* llama-stack-client toolgroups get
* llama-stack-client toolgroups register
* llama-stack-client toolgroups unregister - Downloading Models
* Installation
* Downloading models via CLI
* Downloading from Meta
* Downloading from Hugging Face
* List the downloaded models - Evaluations
* Evaluation Concepts
* Evaluation Examples Walkthrough
* 1. Open Benchmark Model Evaluation
* 2. Agentic Evaluation
* 3. Agentic Application Dataset Scoring
* Running Evaluations via CLI
* Benchmark Evaluation CLI
* Application Evaluation CLI
* Defining BenchmarkConfig
* Open-benchmark Contributing Guide
* Create the new dataset for your new benchmark
* Find scoring function for your new benchmark
* Add new benchmark into template
* Test the new benchmark
- References
- API Reference
- View page source