Immanuel Kalcher | Ludwig-Maximilians-Universität München (original) (raw)

Uploads

Papers by Immanuel Kalcher

Research paper thumbnail of STRUCTURAL AND MICROMAGNETIC SIMULATIONS OF NANOSTRUCTURED MATERIALS

Research paper thumbnail of MICROMAGNETIC MODELLING OF ADVANCED RECORDING STRUCTURES

Research paper thumbnail of Structure-thermodynamics relation of electrolyte solutions

Chemical Physics, 2009

The structure of aqueous LiCl, NaCl, KCl, CsCl, KF, and NaI solutions is calculated by molecular ... more The structure of aqueous LiCl, NaCl, KCl, CsCl, KF, and NaI solutions is calculated by molecular dynamics (MD) simulations of the frequently employed Dang force-field in SPC/E water. By using liquid state theory, we integrate the structure to obtain the electrolytes' osmotic coefficient phi and systematically investigate force-field quality and structural consequences to ion-specific bulk thermodynamics. The osmotic coefficients phi(chi) calculated from the exact compressibility route for the cation-Cl(-) force-fields match experiments for concentrations rho approximately < 2M, while NaI and KF parameters fail. Comparison of phi(chi) with phi(v) from the virial route, which relies on the pair potential approximation, shows that many-body effects become important for all salts above rho approximately 0.5M. They can be efficiently corrected, however, by employing a salt-type and rho-dependent dielectric constant epsilon(rho), generalizing previous observations on NaCl only. For physiological concentrations, rho approximately < 0.5M, the specific osmotic behavior is found to be determined by the short-ranged cation-anion pair potential only and is strongly related to the second virial coefficient of the latter. Presented methods and findings, based on simple integrations over the electrolyte structure, enable efficient MD force-field refinement by direct benchmarking to the sensitive electrolyte thermodynamics, instead to noncollective, single ion properties.

Research paper thumbnail of Ion-specific thermodynamics of multicomponent electrolytes: A hybrid HNC/MD approach

Chemical Physics, 2009

Using effective infinite dilution ion-ion interaction potentials derived from explicit-water mole... more Using effective infinite dilution ion-ion interaction potentials derived from explicit-water molecular dynamics (MD) computer simulations in the hypernetted-chain (HNC) integral equation theory we calculate the liquid structure and thermodynamic properties, namely the activity and osmotic coeffcients of various multicomponent aqueous electrolyte mixtures. The electrolyte structure expressed by the ion-ion radial distribution functions is for most ions in excellent agreement with MD and implicit solvent Monte-Carlo (MC) simulation results. Calculated thermodynamic properties are also represented consistently among these three methods. Our versatile HNC/MD hybrid method allows for a quick prediction of the thermodynamics of multicomponent electrolyte solutions for a wide range of concentrations and an efficient assessment of the validity of the employed MD force-fields with possible implications in the development of thermodynamically consistent parameter sets.

Research paper thumbnail of Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces

Chemical Physics, 2010

We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, ... more We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.

Research paper thumbnail of Ionic force field optimization based on single-ion and ion-pair solvation properties

Chemical Physics, 2010

Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed... more Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed for the ions. To resolve the fine differences between ions of the same valence and roughly similar size and in particular to correctly describe ion-specific effects, it is clear that accurate force fields are necessary. In the past, optimization strategies for ionic force fields either considered single-ion properties (such as the solvation free energy at infinite dilution or the ion-water structure) or ionpair properties (in the form of ion-ion distribution functions). In this paper we investigate strategies to optimize ionic force fields based on single-ion and ion-pair properties simultaneously. To that end, we simulate five different salt solutions, namely CsCl, KCl, NaI, KF, and CsI, at finite ion concentration. The force fields of these ions are systematically varied under the constraint that the single-ion solvation free energy matches the experimental value, which reduces the two-dimensional {σ, ε} parameter space of the Lennard Jones interaction to a one dimensional line for each ion. From the finite-concentration simulations, the pair-potential is extracted and the osmotic coefficient is calculated, which is compared to experimental data. We find a strong dependence of the osmotic coefficient on the force field, which is remarkable as the single-ion solvation free energy and the ion-water structure remain invariant under the parameter variation. Optimization of the force field is achieved for the cations Cs + and K + , while for the anions I − and F − the experimental osmotic coefficient cannot be reached. This suggests that in the long run, additional parameters might have to be introduced into the modeling, for example by modified mixing rules.

Research paper thumbnail of Ion specific correlations in bulk and at biointerfaces

Journal of Physics-condensed Matter, 2009

Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at in... more Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

Research paper thumbnail of Ionic force field optimization based on single-ion and ion-pair solvation properties

Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed... more Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed for the ions. To resolve the fine differences between ions of the same valence and roughly similar size and in particular to correctly describe ion-specific effects, it is clear that accurate force fields are necessary. In the past, optimization strategies for ionic force fields either considered single-ion properties (such as the solvation free energy at infinite dilution or the ion-water structure) or ion-pair properties (in the form of ion-ion distribution functions). In this paper we investigate strategies to optimize ionic force fields based on single-ion and ion-pair properties simultaneously. To that end, we simulate five different salt solutions, namely CsCl, KCl, NaI, KF, and CsI, at finite ion concentration. The force fields of these ions are systematically varied under the constraint that the single-ion solvation free energy matches the experimental value, which reduces the two-dimensional sigma,epsilon\{\sigma,\epsilon\}sigma,epsilon parameter space of the Lennard Jones interaction to a one dimensional line for each ion. From the finite-concentration simulations, the pair-potential is extracted and the osmotic coefficient is calculated, which is compared to experimental data. We find a strong dependence of the osmotic coefficient on the force field, which is remarkable as the single-ion solvation free energy and the ion-water structure remain invariant under the parameter variation. Optimization of the force field is achieved for the cations Cs$^+$ and K$^+$, while for the anions I$^-$ and F$^-$ the experimental osmotic coefficient cannot be reached. This suggests that in the long run, additional parameters might have to be introduced into the modeling, for example by modified mixing rules.

Research paper thumbnail of Ion-specificity in {\alpha}-helical folding kinetics

The influence of the salts KCl, NaCl, and NaI at molar concentrations on the {\alpha}-helical fol... more The influence of the salts KCl, NaCl, and NaI at molar concentrations on the {\alpha}-helical folding kinetics of the alanine-based oligopeptide Ace-AEAAAKEAAAKA-Nme is investigated by means of (explicit-water) molecular dynamics simulations and a diffusional analysis. The mean first passage times for folding and unfolding are found to be highly salt-specific. In particular, the folding times increase about one order of magnitude for the sodium salts. The drastic slowing down can be traced back to long-lived, compact configurations of the partially folded peptide, in which sodium ions are tightly bound by several carbonyl and carboxylate groups. This multiple trapping is found to lead to a non-exponential residence time distribution of the cations in the first solvation shell of the peptide. The analysis of {\alpha}-helical folding in the framework of diffusion in a reduced (one-dimensional) free energy landscape further shows that the salt not only specifically modifies equilibrium properties, but also induces kinetic barriers due to individual ion binding. In the sodium salts, for instance, the peptide's configurational mobility (or "diffusivity") can decrease about one order of magnitude. This study demonstrates the highly specific action of ions and highlights the intimate coupling of intramolecular friction and solvent effects in protein folding.

Research paper thumbnail of Ion-Specific Excluded-Volume Correlations and Solvation Forces

Physical Review Letters, 2010

Realistic ion-ion and ion-surface potentials from explicit-water simulations are used in implicit... more Realistic ion-ion and ion-surface potentials from explicit-water simulations are used in implicit-solvent Monte Carlo simulations to study the ionic structure and double-layer forces in a nanometer slab confinement. The highly salt-specific results can be reproduced and rationalized by a simple nonlocal Poisson-Boltzmann theory of a nonadditive primitive model, in which effective hard-sphere radii are obtained from the short-ranged part of the pair potentials. Steric corrections to solvation forces are mainly repulsive and strongly coupled to the ion-surface interactions.

Research paper thumbnail of STRUCTURAL AND MICROMAGNETIC SIMULATIONS OF NANOSTRUCTURED MATERIALS

Research paper thumbnail of MICROMAGNETIC MODELLING OF ADVANCED RECORDING STRUCTURES

Research paper thumbnail of Structure-thermodynamics relation of electrolyte solutions

Chemical Physics, 2009

The structure of aqueous LiCl, NaCl, KCl, CsCl, KF, and NaI solutions is calculated by molecular ... more The structure of aqueous LiCl, NaCl, KCl, CsCl, KF, and NaI solutions is calculated by molecular dynamics (MD) simulations of the frequently employed Dang force-field in SPC/E water. By using liquid state theory, we integrate the structure to obtain the electrolytes' osmotic coefficient phi and systematically investigate force-field quality and structural consequences to ion-specific bulk thermodynamics. The osmotic coefficients phi(chi) calculated from the exact compressibility route for the cation-Cl(-) force-fields match experiments for concentrations rho approximately < 2M, while NaI and KF parameters fail. Comparison of phi(chi) with phi(v) from the virial route, which relies on the pair potential approximation, shows that many-body effects become important for all salts above rho approximately 0.5M. They can be efficiently corrected, however, by employing a salt-type and rho-dependent dielectric constant epsilon(rho), generalizing previous observations on NaCl only. For physiological concentrations, rho approximately < 0.5M, the specific osmotic behavior is found to be determined by the short-ranged cation-anion pair potential only and is strongly related to the second virial coefficient of the latter. Presented methods and findings, based on simple integrations over the electrolyte structure, enable efficient MD force-field refinement by direct benchmarking to the sensitive electrolyte thermodynamics, instead to noncollective, single ion properties.

Research paper thumbnail of Ion-specific thermodynamics of multicomponent electrolytes: A hybrid HNC/MD approach

Chemical Physics, 2009

Using effective infinite dilution ion-ion interaction potentials derived from explicit-water mole... more Using effective infinite dilution ion-ion interaction potentials derived from explicit-water molecular dynamics (MD) computer simulations in the hypernetted-chain (HNC) integral equation theory we calculate the liquid structure and thermodynamic properties, namely the activity and osmotic coeffcients of various multicomponent aqueous electrolyte mixtures. The electrolyte structure expressed by the ion-ion radial distribution functions is for most ions in excellent agreement with MD and implicit solvent Monte-Carlo (MC) simulation results. Calculated thermodynamic properties are also represented consistently among these three methods. Our versatile HNC/MD hybrid method allows for a quick prediction of the thermodynamics of multicomponent electrolyte solutions for a wide range of concentrations and an efficient assessment of the validity of the employed MD force-fields with possible implications in the development of thermodynamically consistent parameter sets.

Research paper thumbnail of Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces

Chemical Physics, 2010

We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, ... more We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.

Research paper thumbnail of Ionic force field optimization based on single-ion and ion-pair solvation properties

Chemical Physics, 2010

Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed... more Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed for the ions. To resolve the fine differences between ions of the same valence and roughly similar size and in particular to correctly describe ion-specific effects, it is clear that accurate force fields are necessary. In the past, optimization strategies for ionic force fields either considered single-ion properties (such as the solvation free energy at infinite dilution or the ion-water structure) or ionpair properties (in the form of ion-ion distribution functions). In this paper we investigate strategies to optimize ionic force fields based on single-ion and ion-pair properties simultaneously. To that end, we simulate five different salt solutions, namely CsCl, KCl, NaI, KF, and CsI, at finite ion concentration. The force fields of these ions are systematically varied under the constraint that the single-ion solvation free energy matches the experimental value, which reduces the two-dimensional {σ, ε} parameter space of the Lennard Jones interaction to a one dimensional line for each ion. From the finite-concentration simulations, the pair-potential is extracted and the osmotic coefficient is calculated, which is compared to experimental data. We find a strong dependence of the osmotic coefficient on the force field, which is remarkable as the single-ion solvation free energy and the ion-water structure remain invariant under the parameter variation. Optimization of the force field is achieved for the cations Cs + and K + , while for the anions I − and F − the experimental osmotic coefficient cannot be reached. This suggests that in the long run, additional parameters might have to be introduced into the modeling, for example by modified mixing rules.

Research paper thumbnail of Ion specific correlations in bulk and at biointerfaces

Journal of Physics-condensed Matter, 2009

Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at in... more Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

Research paper thumbnail of Ionic force field optimization based on single-ion and ion-pair solvation properties

Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed... more Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed for the ions. To resolve the fine differences between ions of the same valence and roughly similar size and in particular to correctly describe ion-specific effects, it is clear that accurate force fields are necessary. In the past, optimization strategies for ionic force fields either considered single-ion properties (such as the solvation free energy at infinite dilution or the ion-water structure) or ion-pair properties (in the form of ion-ion distribution functions). In this paper we investigate strategies to optimize ionic force fields based on single-ion and ion-pair properties simultaneously. To that end, we simulate five different salt solutions, namely CsCl, KCl, NaI, KF, and CsI, at finite ion concentration. The force fields of these ions are systematically varied under the constraint that the single-ion solvation free energy matches the experimental value, which reduces the two-dimensional sigma,epsilon\{\sigma,\epsilon\}sigma,epsilon parameter space of the Lennard Jones interaction to a one dimensional line for each ion. From the finite-concentration simulations, the pair-potential is extracted and the osmotic coefficient is calculated, which is compared to experimental data. We find a strong dependence of the osmotic coefficient on the force field, which is remarkable as the single-ion solvation free energy and the ion-water structure remain invariant under the parameter variation. Optimization of the force field is achieved for the cations Cs$^+$ and K$^+$, while for the anions I$^-$ and F$^-$ the experimental osmotic coefficient cannot be reached. This suggests that in the long run, additional parameters might have to be introduced into the modeling, for example by modified mixing rules.

Research paper thumbnail of Ion-specificity in {\alpha}-helical folding kinetics

The influence of the salts KCl, NaCl, and NaI at molar concentrations on the {\alpha}-helical fol... more The influence of the salts KCl, NaCl, and NaI at molar concentrations on the {\alpha}-helical folding kinetics of the alanine-based oligopeptide Ace-AEAAAKEAAAKA-Nme is investigated by means of (explicit-water) molecular dynamics simulations and a diffusional analysis. The mean first passage times for folding and unfolding are found to be highly salt-specific. In particular, the folding times increase about one order of magnitude for the sodium salts. The drastic slowing down can be traced back to long-lived, compact configurations of the partially folded peptide, in which sodium ions are tightly bound by several carbonyl and carboxylate groups. This multiple trapping is found to lead to a non-exponential residence time distribution of the cations in the first solvation shell of the peptide. The analysis of {\alpha}-helical folding in the framework of diffusion in a reduced (one-dimensional) free energy landscape further shows that the salt not only specifically modifies equilibrium properties, but also induces kinetic barriers due to individual ion binding. In the sodium salts, for instance, the peptide's configurational mobility (or "diffusivity") can decrease about one order of magnitude. This study demonstrates the highly specific action of ions and highlights the intimate coupling of intramolecular friction and solvent effects in protein folding.

Research paper thumbnail of Ion-Specific Excluded-Volume Correlations and Solvation Forces

Physical Review Letters, 2010

Realistic ion-ion and ion-surface potentials from explicit-water simulations are used in implicit... more Realistic ion-ion and ion-surface potentials from explicit-water simulations are used in implicit-solvent Monte Carlo simulations to study the ionic structure and double-layer forces in a nanometer slab confinement. The highly salt-specific results can be reproduced and rationalized by a simple nonlocal Poisson-Boltzmann theory of a nonadditive primitive model, in which effective hard-sphere radii are obtained from the short-ranged part of the pair potentials. Steric corrections to solvation forces are mainly repulsive and strongly coupled to the ion-surface interactions.