Vishnu Kirthi Arivarasan | LOVELY PROFESSIONAL UNIVERSITY (original) (raw)

Papers by Vishnu Kirthi Arivarasan

Research paper thumbnail of Modern Approach in Lectin-Based Nanomedicine

Research paper thumbnail of Marine Nanofactories in Food Industry: Friend or Foe

This book chapter introduces how marine Actinobacteria-inspired nanoparticles are used in the foo... more This book chapter introduces how marine Actinobacteria-inspired nanoparticles are used in the food industry. Food nanotechnology is a zone of rising intrigue, which leads to an entire universe of fresh substantial results for the nourishment and food business. These modules of the nanotechnology application and their functionalities at present led to the building of the sustenance, which includes alterations of the plastic material limitations, combining the dynamic segments that led to the practical qualities past those of routine dynamic bundling, and the detecting and motioning of important data. Nano food bundling or packaging materials may expand nourishment life, enhance sustenance well-being, inform buyers that nourishment is polluted or ruined, and repair the tears and secrete the additives to increase shelf life of the food materials. The role of nanotechnology and its abiding functionalities can be used to identify the specific microscopic organism in the bundling process ...

Research paper thumbnail of Inhibition of Mosquito Vectors of Malaria and Filariasis Using Marine Microorganisms and Their Associated Compounds

Microbial Control of Vector-Borne Diseases, 2018

Research paper thumbnail of An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

Research paper thumbnail of Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice

Parasitology Research, 2015

Malaria is an infectious disease caused by the Plasmodium parasite that continues to be a health ... more Malaria is an infectious disease caused by the Plasmodium parasite that continues to be a health issue for humans. It is one of the most common pathogenic factors of morbidity and mortality. Palladium nanoparticles (Pd NPs) have been used as target antimicrobial compounds, as a catalyst to manufacture pharmaceuticals, degrade harmful environmental pollutants, and as sensors for the detection of various analyses. The aim of this study was to investigate the antiplasmodial activity of synthesized Pd NPs by using leaf aqueous extract of Eclipta prostrata against Plasmodium berghei in Swiss albino mice. The synthesized Pd NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) with Energy dispersive X-ray spectroscopy (EDX), and High-resolution transmission electron microscope (HRTEM) with the Selected area (electron) diffraction (SAED). The XRD peaks appeared at 35.61°, 44.27°, 56.40°, and 74.51°, which correspond to (111), (200), (220), and (311) planes for palladium, respectively. The FTIR spectra that were carried out to identify the potential biomolecule of synthesized Pd NPs showed the peaks at 3361, 1540, 1399, 1257, 1049, and 659 in the region of 4000-500 cm(-1). The SEM images showed aggregation of NPs with an average size of 63 ± 1.4. The HRTEM images of the precipitated solid phase obtained after termination of the reaction of E. prostrata aqueous leaf extract were in the range from 18 to 64 nm with an average size of 27 ± 1.3 nm. The in vivo antiplasmodial assay was carried out as per Peters' 4-day suppressive test, and the synthesized Pd NP-treated mice group showed reduction of parasitemia by 78.13 % with an inhibitory concentration (IC)50 value of 16.44 mg/kg/body weight. The growth inhibition of E. prostrata aqueous leaf extract, palladium acetate, and synthesized Pd NPs showed the IC20, IC50, and IC90 values of 1.90, 10.29, and 64.11; 4.49, 9.84, and 23.04; and 4.34, 8.70, and 18.49 mg/kg/body weight, respectively against NK65 strain of P. berghei. In vitro cytotoxicity of the aqueous leaf extract of E. prostrata, palladium acetate, and Pd NPs that was evaluated against Hep-G2 cell lines showed the cellular toxicity of 7.5, 12, 22, 32, and 39 %; 8.2, 18, 32, 55, and 66.2 %; and 8.5, 24, 48, 65, and 76.5 % at 1, 10, 100, 250, and 500 μg/mL, respectively. This green chemistry approach toward the synthesis of Pd NPs has many advantages such as, ease with which the process can be scaled up, and economic viability.

Research paper thumbnail of Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties

Asian Pacific journal of tropical medicine, 2014

To determine the efficacies of antibacterial and antioxidant activities of aqueous leaf extract o... more To determine the efficacies of antibacterial and antioxidant activities of aqueous leaf extract of Psidium guajava mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs). Synthesized TiO2 NPs were tested by disc diffusion method against against human pathogenic bacteria. The total antioxidant activity and phenolic content (Folin-Ciocalteau method) of synthesized TiO2 NPs and aqueous plant extract were determined. The scavenging radicals were estimated by DPPH method. The synthesized TiO2 NPs were characterized by XRD, FTIR, FESEM and EDX. FTIR spectra of synthesized TiO2 NPs exhibited prominent peaks at 3 410 cm(-1) (alkynes), 1 578 cm(-1), 1 451 cm(-1) (alkanes), and 1 123 cm(-1)(C-O absorption). The morphological characterization of synthesized TiO2 NPs was analysed by FESEM which showed spherical shape and clusters with an average size of 32.58 nm. The maximum zone of inhibition was observed in the synthesized TiO2 NPs (20 μg/mL) against Staphylococcus aureus (25 mm) ...

Research paper thumbnail of Phytochemical composition, mosquito larvicidal, ovicidal and repellent activity of Calotropis procera against Culex tritaeniorhynchus and Culex gelidus

Bangladesh Journal of Pharmacology, 2012

Research paper thumbnail of Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus

Ecotoxicology and environmental safety, 2014

The aim of the present study was to assess the oxidative stress, antioxidant response and histopa... more The aim of the present study was to assess the oxidative stress, antioxidant response and histopathological changes of nickel nanoparticles (Ni NPs) exposure (14 days) in Mozambique tilapia, Oreochromis mossambicus. Ni NPs were synthesized by metal salt reduction method and characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The XRD peaks at 44°, 51° and 76° were indexed to the (111), (200) and (220) Bragg's reflections of cubic structure of Nickel, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 56nm. TEM images showed that the synthesized Ni NPs are spherical in shape. Biochemical analysis indicated that the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity was significantly affected by Ni NPs treated O. mossambicus. Reduced antioxidant enzymes and the contents of antioxidants were lowered in the liver and gills of fishes treat...

Research paper thumbnail of Evaluation of antibacterial activity of selected medicinal plant extracts from south India against human pathogens

Asian Pacific Journal of Tropical Disease, 2012

Research paper thumbnail of Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa

Asian Pacific Journal of Tropical Medicine, 2013

Research paper thumbnail of Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013

Nanosized materials have been an important subject in basic and applied sciences. A novel, low-co... more Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430 cm(-1)) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 40.50 nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC-MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-L-glutamic acid (6.90%), glycyl-L-proline (74.41%) and L-Leucyl-D-leucine (15.74%). The potential glycyl-L-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33 mm) and S. pyogenes (31 mm).

Research paper thumbnail of Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites

Veterinary Parasitology, 2013

The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni ... more The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 111, 220, and 200 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC(50) values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r(2) values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC(50) values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r(2) values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.

Research paper thumbnail of Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012

In the present work, we describe a low-cost, unreported and simple procedure for biosynthesis of ... more In the present work, we describe a low-cost, unreported and simple procedure for biosynthesis of zinc oxide nanoparticles (ZnO NPs) using reproducible bacteria, Aeromonas hydrophila as eco-friendly reducing and capping agent. UV-vis spectroscopy, XRD, FTIR, AFM, NC-AFM and FESEM with EDX analyses were performed to ascertain the formation and characterization of ZnO NPs. The synthesized ZnO NPs were characterized by a peak at 374 nm in the UV-vis spectrum. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical, oval with an average size of 57.72 nm. Synthesized ZnO NPs showed the XRD peaks at 31.75°, 34.37°, 47.60°, 56.52°, 66.02° and 75.16° were identified as (100), (002), (101), (102), (110), (112) and (202) reflections, respectively. Rietveld analysis to the X-ray data indicated that ZnO NPs have hexagonal unit cell at crystalline level. The size and topological structure of the ZnO NPs was measured by NC-AFM. The morphological characterization of synthesized nanoparticles was analyzed by FESEM and chemical composition by EDX. The antibacterial and antifungal activity was ended with corresponding well diffusion and minimum inhibitory concentration. The maximum zone of inhibition was observed in the ZnO NPs (25 μg/mL) against Pseudomonas aeruginosa (22±1.8 mm) and Aspergillus flavus (19±1.0 mm). Bacteria-mediated ZnO NPs were synthesized and proved to be a good novel antimicrobial material for the first time in this study.

Research paper thumbnail of Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis

Parasitology Research, 2011

The purpose of the present study was based on assessments of the antiparasitic activities of synt... more The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO(2) NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO(2) NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO(2) NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO(2) NPs exhibited prominent peaks at 714 (Ti-O-O bond), 1,076 (C-N stretch aliphatic amines), 1,172 (C-O stretching vibrations in alcoholic groups), 1,642 (N-H bend bond), and 3,426 (O-H stretching due to alcoholic group). SEM analysis of the synthesized TiO(2) NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-110 nm. By Bragg's law and Scherrer's constant, it is proved that the mean size of synthesized TiO(2) NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO(2) NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO(2) solution, and synthesized TiO(2) NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD(50) values of 36.17 and 30.35 mg/L, and r (2) values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO(2) solution against H. maculata and B. ovis (LD(50) = 33.40 and 34.74 mg/L; r (2) = 0.786 and 0.873), respectively, and the maximum activity was observed in the synthesized TiO(2) NPs against H. maculata and B. ovis with LD(50) values of LD(50) = 7.09 and 6.56 mg/L, and r (2) values of 0.880 and 0.913, respectively. This method is considered as an innovative alternative approach to control the hematophagous fly and sheep-biting louse.

Research paper thumbnail of Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus

Parasitology Research, 2010

The purpose of the present study was to assess the effect of crude extracts of marine actinobacte... more The purpose of the present study was to assess the effect of crude extracts of marine actinobacteria on larvicidal, repellent, and ovicidal activities against Culex tritaeniorhynchus and Culex gelidus (Diptera: Culicidae). The early fourth instar larvae of C. tritaeniorhynchus and C. gelidus, reared in the laboratory, were used for larvicidal, ovicidal, and repellent assay with crude extracts of actinobacteria. Saccharomonospora spp. (LK-1), Streptomyces roseiscleroticus (LK-2), and Streptomyces gedanensis (LK-3) were identified as potential biocide producers. Based on the antimicrobial activity, three strains were chosen for larvicidal activity. The marine actinobacterial extracts showed moderate to high larvicidal effects after 24 h of exposure at 1,000 ppm and the highest larval mortality was found in extract of LK-3 (LC(50) = 108.08 ppm and LC(90) = 609.15 ppm) against the larvae of C. gelidus and (LC(50) = 146.24 ppm and LC(90) = 762.69 ppm) against the larvae of C. tritaeniorhynchus. Complete protections for 240 min were found in crude extract of LK-2 and LK-3 at 1,000 ppm, against mosquito bites of C. tritaeniorhynchus and C. gelidus, respectively. After 24-h treatment, mean percent hatchability of the ovicidal activity was observed. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Crude extracts of LK-1 and LK-3 showed no hatchability at 1,000 ppm against C. tritaeniorhynchus and C. gelidus, respectively. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. tritaeniorhynchus and C. gelidus.

Research paper thumbnail of Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods

Parasitology Research, 2013

Research paper thumbnail of Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors

Parasitology Research, 2013

Research paper thumbnail of Bioassay-guided isolation and characterization of active antiplasmodial compounds from Murraya koenigii extracts against Plasmodium falciparum and Plasmodium berghei

Parasitology Research, 2014

Research paper thumbnail of Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis

Parasitology Research, 2011

In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synth... more In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synthesis of silver nanoparticles (Ag NPs) using leaf aqueous extract of Lawsonia inermis as eco-friendly reducing and capping agent. The aim of the present study was to assess the lousicidal activity of synthesized Ag NPs against human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), and sheep body louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). Direct contact method was conducted to determine the potential of pediculocidal activity and impregnated method was used with slight modifications to improve practicality and efficiency of tested materials of synthesized Ag NPs against B. ovis. The synthesized Ag NPs characterized with the UV showing peak at 426 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the silver with lattice constants. XRD analysis showed intense peaks at 2θ values of 38.34°, 44.59°, 65.04°, and 77.77° corresponding to (111), (200), (220), and (311) Bragg's reflection based on the fcc structure of Ag NPs. Fourier transform infrared spectroscopy (FTIR) spectra of Ag NPs exhibited prominent peaks at 3,422.13, 2,924.12, 2,851.76, 1,631.41, 1,381.60, 1,087.11, and 789.55 cm(-1). Scanning electron microscopy (SEM) micrograph showed mean size of 59.52 nm and aggregates of spherical shape Ag NPs. Energy dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized Ag NPs. In pediculocidal activity, the results showed that the optimal times for measuring percent mortality effects of synthesized Ag NPs were 26, 61, 84, and 100 at 5, 10, 15, and 20 min, respectively. The average percent mortality for synthesized Ag NPs was 33, 84, 91, and 100 at 10, 15, 20, and 35 min, respectively against B. ovis. The maximum activity was observed in the aqueous leaf extract of L. inermis, 1 mM AgNO(3) solution, and synthesized Ag NPs against P. humanus capitis with LC(50) values of 18.26, 7.77, and 1.33 mg l(-1) and r (2) values of 0.863, 0.900, and 0.803 and against B. ovis showed with LC(50) values of 21.19, 8.49, and 1.41 mg l(-1) and r (2) values of 0.920, 0.938 and 0.870, respectively. The findings revealed that synthesized Ag NPs possess excellent anti-lousicidal activity.

Research paper thumbnail of Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus

Parasitology Research, 2013

Research paper thumbnail of Modern Approach in Lectin-Based Nanomedicine

Research paper thumbnail of Marine Nanofactories in Food Industry: Friend or Foe

This book chapter introduces how marine Actinobacteria-inspired nanoparticles are used in the foo... more This book chapter introduces how marine Actinobacteria-inspired nanoparticles are used in the food industry. Food nanotechnology is a zone of rising intrigue, which leads to an entire universe of fresh substantial results for the nourishment and food business. These modules of the nanotechnology application and their functionalities at present led to the building of the sustenance, which includes alterations of the plastic material limitations, combining the dynamic segments that led to the practical qualities past those of routine dynamic bundling, and the detecting and motioning of important data. Nano food bundling or packaging materials may expand nourishment life, enhance sustenance well-being, inform buyers that nourishment is polluted or ruined, and repair the tears and secrete the additives to increase shelf life of the food materials. The role of nanotechnology and its abiding functionalities can be used to identify the specific microscopic organism in the bundling process ...

Research paper thumbnail of Inhibition of Mosquito Vectors of Malaria and Filariasis Using Marine Microorganisms and Their Associated Compounds

Microbial Control of Vector-Borne Diseases, 2018

Research paper thumbnail of An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

Research paper thumbnail of Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice

Parasitology Research, 2015

Malaria is an infectious disease caused by the Plasmodium parasite that continues to be a health ... more Malaria is an infectious disease caused by the Plasmodium parasite that continues to be a health issue for humans. It is one of the most common pathogenic factors of morbidity and mortality. Palladium nanoparticles (Pd NPs) have been used as target antimicrobial compounds, as a catalyst to manufacture pharmaceuticals, degrade harmful environmental pollutants, and as sensors for the detection of various analyses. The aim of this study was to investigate the antiplasmodial activity of synthesized Pd NPs by using leaf aqueous extract of Eclipta prostrata against Plasmodium berghei in Swiss albino mice. The synthesized Pd NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) with Energy dispersive X-ray spectroscopy (EDX), and High-resolution transmission electron microscope (HRTEM) with the Selected area (electron) diffraction (SAED). The XRD peaks appeared at 35.61°, 44.27°, 56.40°, and 74.51°, which correspond to (111), (200), (220), and (311) planes for palladium, respectively. The FTIR spectra that were carried out to identify the potential biomolecule of synthesized Pd NPs showed the peaks at 3361, 1540, 1399, 1257, 1049, and 659 in the region of 4000-500 cm(-1). The SEM images showed aggregation of NPs with an average size of 63 ± 1.4. The HRTEM images of the precipitated solid phase obtained after termination of the reaction of E. prostrata aqueous leaf extract were in the range from 18 to 64 nm with an average size of 27 ± 1.3 nm. The in vivo antiplasmodial assay was carried out as per Peters' 4-day suppressive test, and the synthesized Pd NP-treated mice group showed reduction of parasitemia by 78.13 % with an inhibitory concentration (IC)50 value of 16.44 mg/kg/body weight. The growth inhibition of E. prostrata aqueous leaf extract, palladium acetate, and synthesized Pd NPs showed the IC20, IC50, and IC90 values of 1.90, 10.29, and 64.11; 4.49, 9.84, and 23.04; and 4.34, 8.70, and 18.49 mg/kg/body weight, respectively against NK65 strain of P. berghei. In vitro cytotoxicity of the aqueous leaf extract of E. prostrata, palladium acetate, and Pd NPs that was evaluated against Hep-G2 cell lines showed the cellular toxicity of 7.5, 12, 22, 32, and 39 %; 8.2, 18, 32, 55, and 66.2 %; and 8.5, 24, 48, 65, and 76.5 % at 1, 10, 100, 250, and 500 μg/mL, respectively. This green chemistry approach toward the synthesis of Pd NPs has many advantages such as, ease with which the process can be scaled up, and economic viability.

Research paper thumbnail of Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties

Asian Pacific journal of tropical medicine, 2014

To determine the efficacies of antibacterial and antioxidant activities of aqueous leaf extract o... more To determine the efficacies of antibacterial and antioxidant activities of aqueous leaf extract of Psidium guajava mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs). Synthesized TiO2 NPs were tested by disc diffusion method against against human pathogenic bacteria. The total antioxidant activity and phenolic content (Folin-Ciocalteau method) of synthesized TiO2 NPs and aqueous plant extract were determined. The scavenging radicals were estimated by DPPH method. The synthesized TiO2 NPs were characterized by XRD, FTIR, FESEM and EDX. FTIR spectra of synthesized TiO2 NPs exhibited prominent peaks at 3 410 cm(-1) (alkynes), 1 578 cm(-1), 1 451 cm(-1) (alkanes), and 1 123 cm(-1)(C-O absorption). The morphological characterization of synthesized TiO2 NPs was analysed by FESEM which showed spherical shape and clusters with an average size of 32.58 nm. The maximum zone of inhibition was observed in the synthesized TiO2 NPs (20 μg/mL) against Staphylococcus aureus (25 mm) ...

Research paper thumbnail of Phytochemical composition, mosquito larvicidal, ovicidal and repellent activity of Calotropis procera against Culex tritaeniorhynchus and Culex gelidus

Bangladesh Journal of Pharmacology, 2012

Research paper thumbnail of Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus

Ecotoxicology and environmental safety, 2014

The aim of the present study was to assess the oxidative stress, antioxidant response and histopa... more The aim of the present study was to assess the oxidative stress, antioxidant response and histopathological changes of nickel nanoparticles (Ni NPs) exposure (14 days) in Mozambique tilapia, Oreochromis mossambicus. Ni NPs were synthesized by metal salt reduction method and characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The XRD peaks at 44°, 51° and 76° were indexed to the (111), (200) and (220) Bragg's reflections of cubic structure of Nickel, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 56nm. TEM images showed that the synthesized Ni NPs are spherical in shape. Biochemical analysis indicated that the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity was significantly affected by Ni NPs treated O. mossambicus. Reduced antioxidant enzymes and the contents of antioxidants were lowered in the liver and gills of fishes treat...

Research paper thumbnail of Evaluation of antibacterial activity of selected medicinal plant extracts from south India against human pathogens

Asian Pacific Journal of Tropical Disease, 2012

Research paper thumbnail of Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa

Asian Pacific Journal of Tropical Medicine, 2013

Research paper thumbnail of Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013

Nanosized materials have been an important subject in basic and applied sciences. A novel, low-co... more Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430 cm(-1)) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 40.50 nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC-MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-L-glutamic acid (6.90%), glycyl-L-proline (74.41%) and L-Leucyl-D-leucine (15.74%). The potential glycyl-L-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33 mm) and S. pyogenes (31 mm).

Research paper thumbnail of Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites

Veterinary Parasitology, 2013

The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni ... more The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 111, 220, and 200 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC(50) values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r(2) values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC(50) values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r(2) values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.

Research paper thumbnail of Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012

In the present work, we describe a low-cost, unreported and simple procedure for biosynthesis of ... more In the present work, we describe a low-cost, unreported and simple procedure for biosynthesis of zinc oxide nanoparticles (ZnO NPs) using reproducible bacteria, Aeromonas hydrophila as eco-friendly reducing and capping agent. UV-vis spectroscopy, XRD, FTIR, AFM, NC-AFM and FESEM with EDX analyses were performed to ascertain the formation and characterization of ZnO NPs. The synthesized ZnO NPs were characterized by a peak at 374 nm in the UV-vis spectrum. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical, oval with an average size of 57.72 nm. Synthesized ZnO NPs showed the XRD peaks at 31.75°, 34.37°, 47.60°, 56.52°, 66.02° and 75.16° were identified as (100), (002), (101), (102), (110), (112) and (202) reflections, respectively. Rietveld analysis to the X-ray data indicated that ZnO NPs have hexagonal unit cell at crystalline level. The size and topological structure of the ZnO NPs was measured by NC-AFM. The morphological characterization of synthesized nanoparticles was analyzed by FESEM and chemical composition by EDX. The antibacterial and antifungal activity was ended with corresponding well diffusion and minimum inhibitory concentration. The maximum zone of inhibition was observed in the ZnO NPs (25 μg/mL) against Pseudomonas aeruginosa (22±1.8 mm) and Aspergillus flavus (19±1.0 mm). Bacteria-mediated ZnO NPs were synthesized and proved to be a good novel antimicrobial material for the first time in this study.

Research paper thumbnail of Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis

Parasitology Research, 2011

The purpose of the present study was based on assessments of the antiparasitic activities of synt... more The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO(2) NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO(2) NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO(2) NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO(2) NPs exhibited prominent peaks at 714 (Ti-O-O bond), 1,076 (C-N stretch aliphatic amines), 1,172 (C-O stretching vibrations in alcoholic groups), 1,642 (N-H bend bond), and 3,426 (O-H stretching due to alcoholic group). SEM analysis of the synthesized TiO(2) NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-110 nm. By Bragg's law and Scherrer's constant, it is proved that the mean size of synthesized TiO(2) NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO(2) NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO(2) solution, and synthesized TiO(2) NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD(50) values of 36.17 and 30.35 mg/L, and r (2) values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO(2) solution against H. maculata and B. ovis (LD(50) = 33.40 and 34.74 mg/L; r (2) = 0.786 and 0.873), respectively, and the maximum activity was observed in the synthesized TiO(2) NPs against H. maculata and B. ovis with LD(50) values of LD(50) = 7.09 and 6.56 mg/L, and r (2) values of 0.880 and 0.913, respectively. This method is considered as an innovative alternative approach to control the hematophagous fly and sheep-biting louse.

Research paper thumbnail of Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus

Parasitology Research, 2010

The purpose of the present study was to assess the effect of crude extracts of marine actinobacte... more The purpose of the present study was to assess the effect of crude extracts of marine actinobacteria on larvicidal, repellent, and ovicidal activities against Culex tritaeniorhynchus and Culex gelidus (Diptera: Culicidae). The early fourth instar larvae of C. tritaeniorhynchus and C. gelidus, reared in the laboratory, were used for larvicidal, ovicidal, and repellent assay with crude extracts of actinobacteria. Saccharomonospora spp. (LK-1), Streptomyces roseiscleroticus (LK-2), and Streptomyces gedanensis (LK-3) were identified as potential biocide producers. Based on the antimicrobial activity, three strains were chosen for larvicidal activity. The marine actinobacterial extracts showed moderate to high larvicidal effects after 24 h of exposure at 1,000 ppm and the highest larval mortality was found in extract of LK-3 (LC(50) = 108.08 ppm and LC(90) = 609.15 ppm) against the larvae of C. gelidus and (LC(50) = 146.24 ppm and LC(90) = 762.69 ppm) against the larvae of C. tritaeniorhynchus. Complete protections for 240 min were found in crude extract of LK-2 and LK-3 at 1,000 ppm, against mosquito bites of C. tritaeniorhynchus and C. gelidus, respectively. After 24-h treatment, mean percent hatchability of the ovicidal activity was observed. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Crude extracts of LK-1 and LK-3 showed no hatchability at 1,000 ppm against C. tritaeniorhynchus and C. gelidus, respectively. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. tritaeniorhynchus and C. gelidus.

Research paper thumbnail of Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods

Parasitology Research, 2013

Research paper thumbnail of Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors

Parasitology Research, 2013

Research paper thumbnail of Bioassay-guided isolation and characterization of active antiplasmodial compounds from Murraya koenigii extracts against Plasmodium falciparum and Plasmodium berghei

Parasitology Research, 2014

Research paper thumbnail of Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis

Parasitology Research, 2011

In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synth... more In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synthesis of silver nanoparticles (Ag NPs) using leaf aqueous extract of Lawsonia inermis as eco-friendly reducing and capping agent. The aim of the present study was to assess the lousicidal activity of synthesized Ag NPs against human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), and sheep body louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). Direct contact method was conducted to determine the potential of pediculocidal activity and impregnated method was used with slight modifications to improve practicality and efficiency of tested materials of synthesized Ag NPs against B. ovis. The synthesized Ag NPs characterized with the UV showing peak at 426 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the silver with lattice constants. XRD analysis showed intense peaks at 2θ values of 38.34°, 44.59°, 65.04°, and 77.77° corresponding to (111), (200), (220), and (311) Bragg's reflection based on the fcc structure of Ag NPs. Fourier transform infrared spectroscopy (FTIR) spectra of Ag NPs exhibited prominent peaks at 3,422.13, 2,924.12, 2,851.76, 1,631.41, 1,381.60, 1,087.11, and 789.55 cm(-1). Scanning electron microscopy (SEM) micrograph showed mean size of 59.52 nm and aggregates of spherical shape Ag NPs. Energy dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized Ag NPs. In pediculocidal activity, the results showed that the optimal times for measuring percent mortality effects of synthesized Ag NPs were 26, 61, 84, and 100 at 5, 10, 15, and 20 min, respectively. The average percent mortality for synthesized Ag NPs was 33, 84, 91, and 100 at 10, 15, 20, and 35 min, respectively against B. ovis. The maximum activity was observed in the aqueous leaf extract of L. inermis, 1 mM AgNO(3) solution, and synthesized Ag NPs against P. humanus capitis with LC(50) values of 18.26, 7.77, and 1.33 mg l(-1) and r (2) values of 0.863, 0.900, and 0.803 and against B. ovis showed with LC(50) values of 21.19, 8.49, and 1.41 mg l(-1) and r (2) values of 0.920, 0.938 and 0.870, respectively. The findings revealed that synthesized Ag NPs possess excellent anti-lousicidal activity.

Research paper thumbnail of Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus

Parasitology Research, 2013