Emma Schachner - Profile on Academia.edu (original) (raw)
Papers by Emma Schachner
Anatomical record (Hoboken, N.J. : 2007), Jan 12, 2016
Rodent models are used for a variety of orthopedic research applications; however, anatomy refere... more Rodent models are used for a variety of orthopedic research applications; however, anatomy references include mostly artistic representations. Advanced imaging techniques, including micro-computed tomography (microCT), can provide more accurate representations of subtle anatomical characteristics. A recent microCT atlas of laboratory mouse (Mus musculus) anatomy depicts the central and tarsal bone III (T3) as a single bone, differing from previous references. Fusion of tarsal bones is generally characterized as pathological secondary to mutations associated with growth factors, and normal variation has not been documented in the mouse tarsus. Therefore, it is unclear if this fusion is a normal or a pathological characteristic. The aim of this study is to characterize the tarsus of the laboratory mouse and compare it to the rat and selected outgroup species (i.e., white-footed mouse) via microCT and histology to determine if the central and T3 are separate or fused into a single bone...
The effects of skeletal asymmetry on interpreting biologic variation and taphonomy in the fossil record
Paleobiology, 2018
Biologic asymmetry is present in all bilaterally symmetric organisms as a result of normal develo... more Biologic asymmetry is present in all bilaterally symmetric organisms as a result of normal developmental instability. However, fossilized organisms, which have undergone distortion due to burial, may have additional asymmetry as a result of taphonomic processes. To investigate this issue, we evaluated the magnitude of shape variation resulting from taphonomy on vertebrate bone using a novel application of fluctuating asymmetry. We quantified the amount of total variance attributed to asymmetry in a taphonomically distorted fossil taxon and compared it with that of three extant taxa. The fossil taxon had an average of 27% higher asymmetry than the extant taxa. In spite of the high amount of taphonomic input, the major axes of shape variation were not greatly altered by removal of the asymmetric component of shape variation. This presents the possibility that either underlying biologic trends drive the principal directions of shape change irrespective of asymmetric taphonomic distorti...
Introducing the Comparative Atlas of Vertebrate Embryology Online Database
The FASEB Journal, 2015
Anatomy of the Respiratory System of the African Grey Parrot ( Psittacus erithacus )
The FASEB Journal, 2018
Supplementary Methods from Vertebral morphometrics and lung structure in non-avian dinosaurs
Tables containing the full lists of extant and extinct taxa used in this study, as well as a deta... more Tables containing the full lists of extant and extinct taxa used in this study, as well as a detailed description of the landmark scheme.
Supplementary Tables from Vertebral morphometrics and lung structure in non-avian dinosaurs
Additional results tables, showing the results of the Procrustes ANOVAs, as well as the LDA class... more Additional results tables, showing the results of the Procrustes ANOVAs, as well as the LDA classifications of fossil taxa.
Preliminary Observations from the First Datasets Available on the CAVE (Comparative Atlas of Vertebrate Embryology) Website
The FASEB Journal, 2015
3D trauma analysis using x-ray microtomography in Tenontosaurus tilletti, Cloverly Formation (Montana, USA)
BMJ Case Reports, 2020
and all emergency services, scientists, and health care professionals for their efforts in combat... more and all emergency services, scientists, and health care professionals for their efforts in combating the COVID-19 outbreak. Contributors ERS and BS both are guarantors of integrity of the entire study and both contributed to the project design, literature research, preparation and editing of this work.
Online conferencing software in radiology: Recent trends and utility
Clinical Imaging, 2021
Videoconferencing platforms have recently gained wide attention due to the COVID-19 pandemic, bot... more Videoconferencing platforms have recently gained wide attention due to the COVID-19 pandemic, both within and outside of the medical community. This article reviews various applications of online meeting technology to the radiologic community, not only in response to the recent pandemic but also thereafter. Various platform features are outlined and discussed, specifically with respect to collaboration, training, and patient care. Platforms reviewed are GoToMeeting, Microsoft Teams, Skype, WebEx, and Zoom.
Journal of Anatomy, 2020
The avian lung is highly specialized and is both functionally and morphologically distinct from t... more The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), threedimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.
Philosophical Transactions of the Royal Society B: Biological Sciences, 2020
The Archosauria are a highly successful group of vertebrates, and their evolution is marked by th... more The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstr...
Osteology of the Late Triassic Bipedal Archosaur Poposaurus gracilis (Archosauria: Pseudosuchia) from Western North America
The Anatomical Record, 2019
Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since th... more Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since the discovery of the holotype fragmentary partial postcranial skeleton in 1915. Poposaurus. gracilis is a member of Poposauroidea, an unusually morphologically divergent clade of pseudosuchians containing taxa that are bipedal, quadrupedal, toothed, edentulous, and some individuals with elongated thoracic neural spines (i.e., sails). In 2003, a well preserved, fully articulated, and nearly complete postcranial skeleton of P. gracilis was discovered with some fragmentary cranial elements from the Upper Triassic Chinle Formation of Grand Staircase‐Escalante National Monument of southern Utah, USA. The aim of this work is to describe the osteology of this specimen in detail and compare P. gracilis to other closely related pseudosuchian archosaurs. The open neurocentral sutures throughout the majority of the vertebral column, the small size of this individual, and the presence of seven evenly spaced cyclic growth marks in the histologically sectioned femur indicate that this specimen was a skeletally immature juvenile, or subadult when it died. The pes of P. gracilis contains multiple skeletal adaptations and osteological correlates for soft tissue structures that support a hypothesis of digitigrady for this taxon. When coupled with the numerous postcranial characters associated with cursoriality, and the many anatomical traits convergent with theropod dinosaurs, this animal likely occupied a similar ecological niche with contemporaneous theropods during the Late Triassic Period. Anat Rec, 303:874–917, 2020. © 2019 American Association for Anatomy
Journal of Anatomy, 2017
The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member... more The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member of Testudines; however, very little is known concerning developmental anomalies and soft tissue pathologies of turtles and other reptiles. Here, we present an unusual case of unilateral pulmonary aplasia, asymmetrical carapacial kyphosis, and mild scoliosis in a live adult C. serpentina. The detailed three-dimensional (3D) anatomy of the respiratory system in both the pathological and normal adult C. serpentina, and a hatchling are visualized using computed tomography (CT), microCT, and 3D digital anatomical models. In the pathological turtle, the right lung consists of an extrapulmonary bronchus that terminates in a blind stump with no lung present. The left lung is hyperinflated relative to the normal adult, occupying the extra coelomic space facilitated by the unusual mid-carapacial kyphotic bulge. The bronchial tree of the left lung retains the overall bauplan of the normal specimens, with some minor downstream variation in the number of secondary airways. The primary difference between the internal pulmonary structure of the pathological individual and that of a normal adult is a marked increase in the surface area and density of the parenchymal tissue originating from the secondary airways, a 14.3% increase in the surface area to volume ratio. Despite this, the aplasia has not had an impact upon the ability of the turtle to survive; however, it did interfere with aquatic locomotion and buoyancy control under water. This turtle represents a striking example of a non-fatal congenital defect and compensatory visceral hypertrophy.
Royal Society Open Science, 2018
The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds wh... more The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds whether an avian-style lung is restricted to birds or first appeared in their dinosaurian ancestors, as common osteological correlates for the respiratory system offer limited information on the lungs themselves. Here, we shed light on these issues by using axial morphology as a direct osteological correlate of lung structure, and quantifying vertebral shape using geometric morphometrics in birds, crocodilians and a wide range of dinosaurian taxa. Although fully avian lungs were a rather late innovation, we quantitatively show that non-avian dinosaurs and basal dinosauriforms possessed bird-like costovertebral joints and a furrowed thoracic ceiling. This would have immobilized the lung's dorsal surface, a structural prerequisite for a thinned blood-gas barrier and increased gas exchange potential. This could have permitted high levels of aerobic and metabolic activity in dinosaurs, eve...
Cystic Calculus in a Laboratory-housed Green Anole (Anolis carolinensis)
Comparative medicine, 2017
An adult, male, wild-caught, laboratory-housed green anole (Anolis carolinensis) on a locomotor p... more An adult, male, wild-caught, laboratory-housed green anole (Anolis carolinensis) on a locomotor performance study was presented for anorexia. The anole exhibited a 26% weight loss and a thin body condition but was otherwise alert and active. Despite supportive care, the anole's clinical condition deteriorated, necessitating euthanasia. Postmortem examination revealed a 4.5 mm × 2.5-mm cystic calculus, which consisted entirely of sodium urate. Here we describe the clinical findings and locomotor consequences of this disease in a green anole. Although urolithiasis has been reported clinically in reptiles, this report presents the first case of a cystic calculus in a laboratory-housed green anole.
PloS one, 2015
The first sentence of the Acknowledgments is incorrect. The correct statement should read: "We th... more The first sentence of the Acknowledgments is incorrect. The correct statement should read: "We thank Nuss Fossils for discovering CM 78000 and CM 78001 and the field area that yielded these specimens. We also acknowledge Triebold Paleontology, Inc. for the preparation of these skeletons."
Anatomical record (Hoboken, N.J. : 2007), 2014
The crocodile-line basal suchian Poposaurus gracilis had body proportions suggesting that it was ... more The crocodile-line basal suchian Poposaurus gracilis had body proportions suggesting that it was an erect, bipedal form like many dinosaurs, prompting questions of whether its pedal proportions, and the shape of its footprint, would likewise "mimic" those of bipedal dinosaurs. We addressed these questions through a comparison of phalangeal, digital, and metatarsal proportions of Poposaurus with those of extinct and extant crocodile-line archosaurs, obligate or facultatively bipedal non-avian dinosaurs, and ground birds of several clades, as well as a comparison of the footprint reconstructed from the foot skeleton of Poposaurus with known early Mesozoic archosaurian ichnotaxa. Bivariate and multivariate analyses of phalangeal and digital dimensions showed numerous instances of convergence in pedal morphology among disparate archosaurian clades. Overall, the foot of Poposaurus is indeed more like that of bipedal dinosaurs than other archosaur groups, but is not exactly like...
Nature Communications, 2014
Anatomical record (Hoboken, N.J. : 2007), Jan 12, 2016
Rodent models are used for a variety of orthopedic research applications; however, anatomy refere... more Rodent models are used for a variety of orthopedic research applications; however, anatomy references include mostly artistic representations. Advanced imaging techniques, including micro-computed tomography (microCT), can provide more accurate representations of subtle anatomical characteristics. A recent microCT atlas of laboratory mouse (Mus musculus) anatomy depicts the central and tarsal bone III (T3) as a single bone, differing from previous references. Fusion of tarsal bones is generally characterized as pathological secondary to mutations associated with growth factors, and normal variation has not been documented in the mouse tarsus. Therefore, it is unclear if this fusion is a normal or a pathological characteristic. The aim of this study is to characterize the tarsus of the laboratory mouse and compare it to the rat and selected outgroup species (i.e., white-footed mouse) via microCT and histology to determine if the central and T3 are separate or fused into a single bone...
The effects of skeletal asymmetry on interpreting biologic variation and taphonomy in the fossil record
Paleobiology, 2018
Biologic asymmetry is present in all bilaterally symmetric organisms as a result of normal develo... more Biologic asymmetry is present in all bilaterally symmetric organisms as a result of normal developmental instability. However, fossilized organisms, which have undergone distortion due to burial, may have additional asymmetry as a result of taphonomic processes. To investigate this issue, we evaluated the magnitude of shape variation resulting from taphonomy on vertebrate bone using a novel application of fluctuating asymmetry. We quantified the amount of total variance attributed to asymmetry in a taphonomically distorted fossil taxon and compared it with that of three extant taxa. The fossil taxon had an average of 27% higher asymmetry than the extant taxa. In spite of the high amount of taphonomic input, the major axes of shape variation were not greatly altered by removal of the asymmetric component of shape variation. This presents the possibility that either underlying biologic trends drive the principal directions of shape change irrespective of asymmetric taphonomic distorti...
Introducing the Comparative Atlas of Vertebrate Embryology Online Database
The FASEB Journal, 2015
Anatomy of the Respiratory System of the African Grey Parrot ( Psittacus erithacus )
The FASEB Journal, 2018
Supplementary Methods from Vertebral morphometrics and lung structure in non-avian dinosaurs
Tables containing the full lists of extant and extinct taxa used in this study, as well as a deta... more Tables containing the full lists of extant and extinct taxa used in this study, as well as a detailed description of the landmark scheme.
Supplementary Tables from Vertebral morphometrics and lung structure in non-avian dinosaurs
Additional results tables, showing the results of the Procrustes ANOVAs, as well as the LDA class... more Additional results tables, showing the results of the Procrustes ANOVAs, as well as the LDA classifications of fossil taxa.
Preliminary Observations from the First Datasets Available on the CAVE (Comparative Atlas of Vertebrate Embryology) Website
The FASEB Journal, 2015
3D trauma analysis using x-ray microtomography in Tenontosaurus tilletti, Cloverly Formation (Montana, USA)
BMJ Case Reports, 2020
and all emergency services, scientists, and health care professionals for their efforts in combat... more and all emergency services, scientists, and health care professionals for their efforts in combating the COVID-19 outbreak. Contributors ERS and BS both are guarantors of integrity of the entire study and both contributed to the project design, literature research, preparation and editing of this work.
Online conferencing software in radiology: Recent trends and utility
Clinical Imaging, 2021
Videoconferencing platforms have recently gained wide attention due to the COVID-19 pandemic, bot... more Videoconferencing platforms have recently gained wide attention due to the COVID-19 pandemic, both within and outside of the medical community. This article reviews various applications of online meeting technology to the radiologic community, not only in response to the recent pandemic but also thereafter. Various platform features are outlined and discussed, specifically with respect to collaboration, training, and patient care. Platforms reviewed are GoToMeeting, Microsoft Teams, Skype, WebEx, and Zoom.
Journal of Anatomy, 2020
The avian lung is highly specialized and is both functionally and morphologically distinct from t... more The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), threedimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.
Philosophical Transactions of the Royal Society B: Biological Sciences, 2020
The Archosauria are a highly successful group of vertebrates, and their evolution is marked by th... more The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstr...
Osteology of the Late Triassic Bipedal Archosaur Poposaurus gracilis (Archosauria: Pseudosuchia) from Western North America
The Anatomical Record, 2019
Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since th... more Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since the discovery of the holotype fragmentary partial postcranial skeleton in 1915. Poposaurus. gracilis is a member of Poposauroidea, an unusually morphologically divergent clade of pseudosuchians containing taxa that are bipedal, quadrupedal, toothed, edentulous, and some individuals with elongated thoracic neural spines (i.e., sails). In 2003, a well preserved, fully articulated, and nearly complete postcranial skeleton of P. gracilis was discovered with some fragmentary cranial elements from the Upper Triassic Chinle Formation of Grand Staircase‐Escalante National Monument of southern Utah, USA. The aim of this work is to describe the osteology of this specimen in detail and compare P. gracilis to other closely related pseudosuchian archosaurs. The open neurocentral sutures throughout the majority of the vertebral column, the small size of this individual, and the presence of seven evenly spaced cyclic growth marks in the histologically sectioned femur indicate that this specimen was a skeletally immature juvenile, or subadult when it died. The pes of P. gracilis contains multiple skeletal adaptations and osteological correlates for soft tissue structures that support a hypothesis of digitigrady for this taxon. When coupled with the numerous postcranial characters associated with cursoriality, and the many anatomical traits convergent with theropod dinosaurs, this animal likely occupied a similar ecological niche with contemporaneous theropods during the Late Triassic Period. Anat Rec, 303:874–917, 2020. © 2019 American Association for Anatomy
Journal of Anatomy, 2017
The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member... more The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member of Testudines; however, very little is known concerning developmental anomalies and soft tissue pathologies of turtles and other reptiles. Here, we present an unusual case of unilateral pulmonary aplasia, asymmetrical carapacial kyphosis, and mild scoliosis in a live adult C. serpentina. The detailed three-dimensional (3D) anatomy of the respiratory system in both the pathological and normal adult C. serpentina, and a hatchling are visualized using computed tomography (CT), microCT, and 3D digital anatomical models. In the pathological turtle, the right lung consists of an extrapulmonary bronchus that terminates in a blind stump with no lung present. The left lung is hyperinflated relative to the normal adult, occupying the extra coelomic space facilitated by the unusual mid-carapacial kyphotic bulge. The bronchial tree of the left lung retains the overall bauplan of the normal specimens, with some minor downstream variation in the number of secondary airways. The primary difference between the internal pulmonary structure of the pathological individual and that of a normal adult is a marked increase in the surface area and density of the parenchymal tissue originating from the secondary airways, a 14.3% increase in the surface area to volume ratio. Despite this, the aplasia has not had an impact upon the ability of the turtle to survive; however, it did interfere with aquatic locomotion and buoyancy control under water. This turtle represents a striking example of a non-fatal congenital defect and compensatory visceral hypertrophy.
Royal Society Open Science, 2018
The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds wh... more The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds whether an avian-style lung is restricted to birds or first appeared in their dinosaurian ancestors, as common osteological correlates for the respiratory system offer limited information on the lungs themselves. Here, we shed light on these issues by using axial morphology as a direct osteological correlate of lung structure, and quantifying vertebral shape using geometric morphometrics in birds, crocodilians and a wide range of dinosaurian taxa. Although fully avian lungs were a rather late innovation, we quantitatively show that non-avian dinosaurs and basal dinosauriforms possessed bird-like costovertebral joints and a furrowed thoracic ceiling. This would have immobilized the lung's dorsal surface, a structural prerequisite for a thinned blood-gas barrier and increased gas exchange potential. This could have permitted high levels of aerobic and metabolic activity in dinosaurs, eve...
Cystic Calculus in a Laboratory-housed Green Anole (Anolis carolinensis)
Comparative medicine, 2017
An adult, male, wild-caught, laboratory-housed green anole (Anolis carolinensis) on a locomotor p... more An adult, male, wild-caught, laboratory-housed green anole (Anolis carolinensis) on a locomotor performance study was presented for anorexia. The anole exhibited a 26% weight loss and a thin body condition but was otherwise alert and active. Despite supportive care, the anole's clinical condition deteriorated, necessitating euthanasia. Postmortem examination revealed a 4.5 mm × 2.5-mm cystic calculus, which consisted entirely of sodium urate. Here we describe the clinical findings and locomotor consequences of this disease in a green anole. Although urolithiasis has been reported clinically in reptiles, this report presents the first case of a cystic calculus in a laboratory-housed green anole.
PloS one, 2015
The first sentence of the Acknowledgments is incorrect. The correct statement should read: "We th... more The first sentence of the Acknowledgments is incorrect. The correct statement should read: "We thank Nuss Fossils for discovering CM 78000 and CM 78001 and the field area that yielded these specimens. We also acknowledge Triebold Paleontology, Inc. for the preparation of these skeletons."
Anatomical record (Hoboken, N.J. : 2007), 2014
The crocodile-line basal suchian Poposaurus gracilis had body proportions suggesting that it was ... more The crocodile-line basal suchian Poposaurus gracilis had body proportions suggesting that it was an erect, bipedal form like many dinosaurs, prompting questions of whether its pedal proportions, and the shape of its footprint, would likewise "mimic" those of bipedal dinosaurs. We addressed these questions through a comparison of phalangeal, digital, and metatarsal proportions of Poposaurus with those of extinct and extant crocodile-line archosaurs, obligate or facultatively bipedal non-avian dinosaurs, and ground birds of several clades, as well as a comparison of the footprint reconstructed from the foot skeleton of Poposaurus with known early Mesozoic archosaurian ichnotaxa. Bivariate and multivariate analyses of phalangeal and digital dimensions showed numerous instances of convergence in pedal morphology among disparate archosaurian clades. Overall, the foot of Poposaurus is indeed more like that of bipedal dinosaurs than other archosaur groups, but is not exactly like...
Nature Communications, 2014