Patrick Rensen | LUMC - Academia.edu (original) (raw)
Papers by Patrick Rensen
Proceedings of the National Academy of Sciences, 2014
Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicit... more Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise encodes angiopoietin-like 4 (ANGPTL4), an inhibitor of lipoprotein lipase-mediated plasma triglyceride clearance. Using a combination of human, animal, and in vitro data, we show that induction of ANGPTL4 in nonexercising muscle is mediated by elevated plasma free fatty acids via peroxisome proliferator-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.
Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mech... more Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[ 3 H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients.
J Lipid Res, 2005
Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic st... more Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic steatosis. Whether the derangements in hepatic metabolism are attributable to steatosis or to the increased availability of FA metabolites is not known. We used methyl palmoxirate (MP), an inhibitor of carnitine palmitoyl transferase I, to acutely inhibit hepatic FA oxidation and investigated whether the FAs were rerouted into VLDL secretion and whether this would affect hepatic glucose production. After an overnight fast, male APOE3*Leiden transgenic mice received an oral dose of 10 mg/kg MP. Administration of MP led to an 83% reduction in plasma  -hydroxybutyrate (ketone body) levels compared with vehicle-treated mice (0.47 ؎ 0.07 vs. 2.81 ؎ 0.16 mmol/l, respectively; P Ͻ 0.01), indicative of impaired ketogenesis. Plasma FFA levels were increased by 32% and cholesterol and insulin levels were decreased by 17% and 50%, respectively, in MP-treated mice compared with controls. MP treatment led to a 30% increase in liver triglyceride (TG) content. Surprisingly, no effect on hepatic VLDL-TG production was observed between the groups at 8 h after MP administration. In addition, the capacity of insulin to suppress endogenous glucose production was unaffected in MP-treated mice compared with controls.
Arteriosclerosis Thrombosis and Vascular Biology, Apr 1, 2006
Atheroscler Suppl, 2009
Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis a... more Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis and catabolism of HDL, but its integrated effect on HDL metabolism in vivo remains unclear. The aim of this study was to evaluate the net effect of PXR agonism on HDL metabolism in ApoE⁎3-Leiden (E3L) and E3L.CETP mice, well-established models for human-like lipoprotein metabolism. Female mice were fed a diet with increasing amounts of the potent PXR agonist 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN). In E3L and E3L.CETP mice, PCN increased liver lipids as well as plasma cholesterol and triglycerides. However, whereas PCN increased cholesterol contained in large HDL-1 particles in E3L mice, it dose-dependently decreased HDL-cholesterol in E3L.CETP mice, indicating that CETP expression dominates the effect of PCN on HDL metabolism. Analysis of the hepatic expression of genes involved in HDL metabolism showed that PCN decreased expression of genes involved in HDL synthesis (Abca1, Apoa1), maturation (Lcat, Pltp) and clearance (Sr-b1). The HDL-increasing effect of PCN, observed in E3L mice, is likely caused by a marked decrease in hepatic SR-BI protein expression, and completely reversed by CETP expression. We conclude that chronic PXR agonism dose-dependently reduces plasma HDL-cholesterol in the presence of CETP.
Arteriosclerosis Thrombosis and Vascular Biology, May 1, 2014
American journal of physiology. Lung cellular and molecular physiology, 2016
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascu... more Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and at...
Atherosclerosis, 2016
We explored the role of ATP-binding cassette transporter A1 (Abca1), in post-myocardial infarctio... more We explored the role of ATP-binding cassette transporter A1 (Abca1), in post-myocardial infarction (MI) cardiac injury. In Abca1(-/-) mice, wild type (WT) mice, and WT mice transplanted with Abca1(-/-) or WT bone marrow, an MI was induced in vivo. Furthermore, an ex vivo MI was induced in isolated Abca1(-/-) and WT hearts. Twenty-four hours and two weeks after in vivo MI induction, MI size was reduced in Abca1(-/-) (-58%, p = 0.007; -59%, p = 0.03) compared to WT. Ex vivo MI induction showed no effect of Abca1(-/-) on infarct size. Interestingly, two weeks after MI, Abca1(-/-) mice showed higher circulating levels of B-cells (+3.0 fold, p = 0.02) and T-cells (+4.2 fold, p = 0.002) compared to WT. Bone marrow-specific Abca1(-/-) tended to reduce infarct size (-43%, p = 0.12), suggesting a detrimental role for hematopoietic Abca1 after MI. Although Abca1 has a protective role in atherosclerosis, it exerts detrimental effects on cardiac function after MI.
Circulation, Nov 25, 2014
Atherosclerosis, 2016
Bacille-Calmette-Guérin (BCG), prepared from attenuated live Mycobacterium bovis, modulates ather... more Bacille-Calmette-Guérin (BCG), prepared from attenuated live Mycobacterium bovis, modulates atherosclerosis development as currently explained by immunomodulatory mechanisms. However, whether BCG is pro- or anti-atherogenic remains inconclusive as the effect of BCG on cholesterol metabolism, the main driver of atherosclerosis development, has remained underexposed in previous studies. Therefore, we aimed to elucidate the effect of BCG on cholesterol metabolism in addition to inflammation and atherosclerosis development in APOE*3-Leiden.CETP mice, a well-established model of human-like lipoprotein metabolism. Hyperlipidemic APOE*3-Leiden.CETP mice were fed a Western-type diet containing 0.1% cholesterol and were terminated 6 weeks after a single intravenous injection with BCG (0.75 mg; 5 × 10(6) CFU). BCG-treated mice exhibited hepatic mycobacterial infection and hepatomegaly. The enlarged liver (+53%, p = 0.001) coincided with severe immune cell infiltration and a higher cholesterol content (+31%, p = 0.03). Moreover, BCG reduced plasma total cholesterol levels (-34%, p = 0.003), which was confined to reduced nonHDL-cholesterol levels (-36%, p = 0.002). This was due to accelerated plasma clearance of cholesterol from intravenously injected [(14)C]cholesteryl oleate-labelled VLDL-like particles (t½ -41%, p = 0.002) as a result of elevated hepatic uptake (+25%, p = 0.05) as well as reduced intestinal cholestanol and plant sterol absorption (up to -37%, p = 0.003). Ultimately, BCG decreased foam cell formation of peritoneal macrophages (-18%, p = 0.02) and delayed atherosclerotic lesion progression in the aortic root of the heart. BCG tended to decrease atherosclerotic lesion area (-59%, p = 0.08) and reduced lesion severity. BCG reduces plasma nonHDL-cholesterol levels and delays atherosclerotic lesion formation in hyperlipidemic mice.
Atheroscler Suppl, 2006
Objectives: Fibrates are lipid-lowering drugs activating specific transcription factors (PPARs). ... more Objectives: Fibrates are lipid-lowering drugs activating specific transcription factors (PPARs). PPARalpha form mediates fibrate action on a number of genes involved in lipoprotein metabolism by proliferation of peroxisome, whose potential biomarker is N-methylnicotinamide (NMN). We wondered whether lipid-lowering therapy induces changes in tHcy and NMN plasma levels and whether folic acid (FA) supplementation aYfects their plasma levels.
Arteriosclerosis, Thrombosis, and Vascular Biology, 2016
Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is assoc... more Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)-mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr(-/-)). Ldlr(-/-) and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr(-/-) but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low-density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography-tandem mass spectrometry suggested a predominant effect of CsA on increased very low-density lipoprotein-IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [(14)C]cholesteryl oleate and glycerol tri[(3)H]oleate-double-labeled very low-density lipoprotein-like particles. Further studies showed that CsA inhibited plasma lipoprotein lipase activity and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. We demonstrate that CsA does not cause hyperlipidemia via direct effects on the LDLr. Rather, LDLr deficiency plays an important permissive role for CsA-induced hyperlipidemia, which is associated with abnormal lipoprotein clearance, decreased lipoprotein lipase activity, and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. Enhancing LDLr and lipoprotein lipase activity and decreasing apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9 levels may therefore provide attractive treatment targets for patients with hyperlipidemia receiving CsA.
European heart journal, Jan 28, 2016
Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desire... more Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desired targets to prevent cardiovascular clinical events. Here we present a novel regulator of cholesterol metabolism, which simultaneously impacts on glucose intolerance and inflammation. Mice deficient for oxygen sensor HIF-prolyl hydroxylase 1 (PHD1) were backcrossed onto an atherogenic low-density lipoprotein receptor (LDLR) knockout background and atherosclerosis was studied upon 8 weeks of western-type diet. PHD1(-/-)LDLR(-/-) mice presented a sharp reduction in VLDL and LDL plasma cholesterol levels. In line, atherosclerotic plaque development, as measured by plaque area, necrotic core expansion and plaque stage was hampered in PHD1(-/-)LDLR(-/-) mice. Mechanistically, cholesterol-lowering in PHD1 deficient mice was a result of enhanced cholesterol excretion from blood to intestines and ultimately faeces. Additionally, flow cytometry of whole blood of these mice revealed significantly ...
Proceedings of the National Academy of Sciences, 2014
Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicit... more Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise encodes angiopoietin-like 4 (ANGPTL4), an inhibitor of lipoprotein lipase-mediated plasma triglyceride clearance. Using a combination of human, animal, and in vitro data, we show that induction of ANGPTL4 in nonexercising muscle is mediated by elevated plasma free fatty acids via peroxisome proliferator-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.
Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mech... more Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[ 3 H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients.
J Lipid Res, 2005
Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic st... more Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic steatosis. Whether the derangements in hepatic metabolism are attributable to steatosis or to the increased availability of FA metabolites is not known. We used methyl palmoxirate (MP), an inhibitor of carnitine palmitoyl transferase I, to acutely inhibit hepatic FA oxidation and investigated whether the FAs were rerouted into VLDL secretion and whether this would affect hepatic glucose production. After an overnight fast, male APOE3*Leiden transgenic mice received an oral dose of 10 mg/kg MP. Administration of MP led to an 83% reduction in plasma  -hydroxybutyrate (ketone body) levels compared with vehicle-treated mice (0.47 ؎ 0.07 vs. 2.81 ؎ 0.16 mmol/l, respectively; P Ͻ 0.01), indicative of impaired ketogenesis. Plasma FFA levels were increased by 32% and cholesterol and insulin levels were decreased by 17% and 50%, respectively, in MP-treated mice compared with controls. MP treatment led to a 30% increase in liver triglyceride (TG) content. Surprisingly, no effect on hepatic VLDL-TG production was observed between the groups at 8 h after MP administration. In addition, the capacity of insulin to suppress endogenous glucose production was unaffected in MP-treated mice compared with controls.
Arteriosclerosis Thrombosis and Vascular Biology, Apr 1, 2006
Atheroscler Suppl, 2009
Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis a... more Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis and catabolism of HDL, but its integrated effect on HDL metabolism in vivo remains unclear. The aim of this study was to evaluate the net effect of PXR agonism on HDL metabolism in ApoE⁎3-Leiden (E3L) and E3L.CETP mice, well-established models for human-like lipoprotein metabolism. Female mice were fed a diet with increasing amounts of the potent PXR agonist 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN). In E3L and E3L.CETP mice, PCN increased liver lipids as well as plasma cholesterol and triglycerides. However, whereas PCN increased cholesterol contained in large HDL-1 particles in E3L mice, it dose-dependently decreased HDL-cholesterol in E3L.CETP mice, indicating that CETP expression dominates the effect of PCN on HDL metabolism. Analysis of the hepatic expression of genes involved in HDL metabolism showed that PCN decreased expression of genes involved in HDL synthesis (Abca1, Apoa1), maturation (Lcat, Pltp) and clearance (Sr-b1). The HDL-increasing effect of PCN, observed in E3L mice, is likely caused by a marked decrease in hepatic SR-BI protein expression, and completely reversed by CETP expression. We conclude that chronic PXR agonism dose-dependently reduces plasma HDL-cholesterol in the presence of CETP.
Arteriosclerosis Thrombosis and Vascular Biology, May 1, 2014
American journal of physiology. Lung cellular and molecular physiology, 2016
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascu... more Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and at...
Atherosclerosis, 2016
We explored the role of ATP-binding cassette transporter A1 (Abca1), in post-myocardial infarctio... more We explored the role of ATP-binding cassette transporter A1 (Abca1), in post-myocardial infarction (MI) cardiac injury. In Abca1(-/-) mice, wild type (WT) mice, and WT mice transplanted with Abca1(-/-) or WT bone marrow, an MI was induced in vivo. Furthermore, an ex vivo MI was induced in isolated Abca1(-/-) and WT hearts. Twenty-four hours and two weeks after in vivo MI induction, MI size was reduced in Abca1(-/-) (-58%, p = 0.007; -59%, p = 0.03) compared to WT. Ex vivo MI induction showed no effect of Abca1(-/-) on infarct size. Interestingly, two weeks after MI, Abca1(-/-) mice showed higher circulating levels of B-cells (+3.0 fold, p = 0.02) and T-cells (+4.2 fold, p = 0.002) compared to WT. Bone marrow-specific Abca1(-/-) tended to reduce infarct size (-43%, p = 0.12), suggesting a detrimental role for hematopoietic Abca1 after MI. Although Abca1 has a protective role in atherosclerosis, it exerts detrimental effects on cardiac function after MI.
Circulation, Nov 25, 2014
Atherosclerosis, 2016
Bacille-Calmette-Guérin (BCG), prepared from attenuated live Mycobacterium bovis, modulates ather... more Bacille-Calmette-Guérin (BCG), prepared from attenuated live Mycobacterium bovis, modulates atherosclerosis development as currently explained by immunomodulatory mechanisms. However, whether BCG is pro- or anti-atherogenic remains inconclusive as the effect of BCG on cholesterol metabolism, the main driver of atherosclerosis development, has remained underexposed in previous studies. Therefore, we aimed to elucidate the effect of BCG on cholesterol metabolism in addition to inflammation and atherosclerosis development in APOE*3-Leiden.CETP mice, a well-established model of human-like lipoprotein metabolism. Hyperlipidemic APOE*3-Leiden.CETP mice were fed a Western-type diet containing 0.1% cholesterol and were terminated 6 weeks after a single intravenous injection with BCG (0.75 mg; 5 × 10(6) CFU). BCG-treated mice exhibited hepatic mycobacterial infection and hepatomegaly. The enlarged liver (+53%, p = 0.001) coincided with severe immune cell infiltration and a higher cholesterol content (+31%, p = 0.03). Moreover, BCG reduced plasma total cholesterol levels (-34%, p = 0.003), which was confined to reduced nonHDL-cholesterol levels (-36%, p = 0.002). This was due to accelerated plasma clearance of cholesterol from intravenously injected [(14)C]cholesteryl oleate-labelled VLDL-like particles (t½ -41%, p = 0.002) as a result of elevated hepatic uptake (+25%, p = 0.05) as well as reduced intestinal cholestanol and plant sterol absorption (up to -37%, p = 0.003). Ultimately, BCG decreased foam cell formation of peritoneal macrophages (-18%, p = 0.02) and delayed atherosclerotic lesion progression in the aortic root of the heart. BCG tended to decrease atherosclerotic lesion area (-59%, p = 0.08) and reduced lesion severity. BCG reduces plasma nonHDL-cholesterol levels and delays atherosclerotic lesion formation in hyperlipidemic mice.
Atheroscler Suppl, 2006
Objectives: Fibrates are lipid-lowering drugs activating specific transcription factors (PPARs). ... more Objectives: Fibrates are lipid-lowering drugs activating specific transcription factors (PPARs). PPARalpha form mediates fibrate action on a number of genes involved in lipoprotein metabolism by proliferation of peroxisome, whose potential biomarker is N-methylnicotinamide (NMN). We wondered whether lipid-lowering therapy induces changes in tHcy and NMN plasma levels and whether folic acid (FA) supplementation aYfects their plasma levels.
Arteriosclerosis, Thrombosis, and Vascular Biology, 2016
Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is assoc... more Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)-mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr(-/-)). Ldlr(-/-) and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr(-/-) but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low-density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography-tandem mass spectrometry suggested a predominant effect of CsA on increased very low-density lipoprotein-IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [(14)C]cholesteryl oleate and glycerol tri[(3)H]oleate-double-labeled very low-density lipoprotein-like particles. Further studies showed that CsA inhibited plasma lipoprotein lipase activity and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. We demonstrate that CsA does not cause hyperlipidemia via direct effects on the LDLr. Rather, LDLr deficiency plays an important permissive role for CsA-induced hyperlipidemia, which is associated with abnormal lipoprotein clearance, decreased lipoprotein lipase activity, and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. Enhancing LDLr and lipoprotein lipase activity and decreasing apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9 levels may therefore provide attractive treatment targets for patients with hyperlipidemia receiving CsA.
European heart journal, Jan 28, 2016
Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desire... more Normalization of hypercholesterolaemia, inflammation, hyperglycaemia, and obesity are main desired targets to prevent cardiovascular clinical events. Here we present a novel regulator of cholesterol metabolism, which simultaneously impacts on glucose intolerance and inflammation. Mice deficient for oxygen sensor HIF-prolyl hydroxylase 1 (PHD1) were backcrossed onto an atherogenic low-density lipoprotein receptor (LDLR) knockout background and atherosclerosis was studied upon 8 weeks of western-type diet. PHD1(-/-)LDLR(-/-) mice presented a sharp reduction in VLDL and LDL plasma cholesterol levels. In line, atherosclerotic plaque development, as measured by plaque area, necrotic core expansion and plaque stage was hampered in PHD1(-/-)LDLR(-/-) mice. Mechanistically, cholesterol-lowering in PHD1 deficient mice was a result of enhanced cholesterol excretion from blood to intestines and ultimately faeces. Additionally, flow cytometry of whole blood of these mice revealed significantly ...