J Gan - Academia.edu (original) (raw)
Address: Legazpi City, Albay, Philippines
less
Uploads
Papers by J Gan
We investigate the effect of fading correlations in multi-element antenna (MEA) communication sys... more We investigate the effect of fading correlations in multi-element antenna (MEA) communication systems. The enormous capacity of an MEA system can potentially be reduced by fading correlation. To model the narrowband Rayleigh-fading multipath environment, we propose an abstract model. Using this model, the fading statistics can be determined from the geometrical parameters of the MEA and the multipath environment. This, model allows us to directly observe how the choice of antenna geometry affects capacity. We show that the MEA capacity can be expressed as the sum of the capacities of several subchannels, whose gains are affected by the fading correlation. As the fading correlation becomes higher, the disparity between the gains of these subchannels becomes larger and as a result some of the subchannels do not convey information at any significant rate
IEEE Journal on Selected Areas in Communications, 2003
In this paper, we discuss some of the most basic architectural superstructures for wireless links... more In this paper, we discuss some of the most basic architectural superstructures for wireless links with multiple antennas:
IEEE Transactions on Communications, 2000
We investigate the effects of fading correlations in multielement antenna (MEA) communication sys... more We investigate the effects of fading correlations in multielement antenna (MEA) communication systems. Pioneering studies showed that if the fades connecting pairs of transmit and receive antenna elements are independently, identically distributed, MEA's offer a large increase in capacity compared to single-antenna systems. An MEA system can be described in terms of spatial eigenmodes, which are single-input single-output subchannels. The channel capacity of an MEA is the sum of capacities of these subchannels. We will show that the fading correlation affects the MEA capacity by modifying the distributions of the gains of these subchannels. The fading correlation depends on the physical parameters of MEA and the scatterer characteristics. In this paper, to characterize the fading correlation, we employ an abstract model, which is appropriate for modeling narrow-band Rayleigh fading in fixed wireless systems.
We investigate the effect of fading correlations in multi-element antenna (MEA) communication sys... more We investigate the effect of fading correlations in multi-element antenna (MEA) communication systems. The enormous capacity of an MEA system can potentially be reduced by fading correlation. To model the narrowband Rayleigh-fading multipath environment, we propose an abstract model. Using this model, the fading statistics can be determined from the geometrical parameters of the MEA and the multipath environment. This, model allows us to directly observe how the choice of antenna geometry affects capacity. We show that the MEA capacity can be expressed as the sum of the capacities of several subchannels, whose gains are affected by the fading correlation. As the fading correlation becomes higher, the disparity between the gains of these subchannels becomes larger and as a result some of the subchannels do not convey information at any significant rate
IEEE Journal on Selected Areas in Communications, 2003
In this paper, we discuss some of the most basic architectural superstructures for wireless links... more In this paper, we discuss some of the most basic architectural superstructures for wireless links with multiple antennas:
IEEE Transactions on Communications, 2000
We investigate the effects of fading correlations in multielement antenna (MEA) communication sys... more We investigate the effects of fading correlations in multielement antenna (MEA) communication systems. Pioneering studies showed that if the fades connecting pairs of transmit and receive antenna elements are independently, identically distributed, MEA's offer a large increase in capacity compared to single-antenna systems. An MEA system can be described in terms of spatial eigenmodes, which are single-input single-output subchannels. The channel capacity of an MEA is the sum of capacities of these subchannels. We will show that the fading correlation affects the MEA capacity by modifying the distributions of the gains of these subchannels. The fading correlation depends on the physical parameters of MEA and the scatterer characteristics. In this paper, to characterize the fading correlation, we employ an abstract model, which is appropriate for modeling narrow-band Rayleigh fading in fixed wireless systems.