Peter M Grace | University of Texas M. D. Anderson Cancer Center (original) (raw)

Papers by Peter M Grace

Research paper thumbnail of Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation

Opioid use for pain management has dramatically increased, with little assessment of potential pa... more Opioid use for pain management has dramatically increased, with little assessment of potential pathophysiological consequences for the primary pain condition. Here, a short course of morphine, starting 10 d after injury in male rats, paradoxically and remarkably doubled the duration of chronic constriction injury (CCI)-allodynia, months after morphine ceased. No such effect of opioids on neuropathic pain has previously been reported. Using pharmacologic and genetic ap- proaches, we discovered that the initiation and maintenance of this multimonth prolongation of neuropathic pain was mediated by a previously unidentified mechanism for spinal cord and pain—namely, morphine-induced spinal NOD-like receptor protein 3 (NLRP3) inflam- masomes and associated release of interleukin-1β (IL-1β). As spinal dorsal horn microglia expressed this signaling platform, these cells were selectively inhibited in vivo after transfection with a novel De- signer Receptor Exclusively Activated by Designer Drugs (DREADD). Multiday treatment with the DREADD-specific ligand clozapine-N- oxide prevented and enduringly reversed morphine-induced persis- tent sensitization for weeks to months after cessation of clozapine- N-oxide. These data demonstrate both the critical importance of microglia and that maintenance of chronic pain created by early ex- posure to opioids can be disrupted, resetting pain to normal. These data also provide strong support for the recent “two-hit hypothesis” of microglial priming, leading to exaggerated reactivity after the sec- ond challenge, documented here in the context of nerve injury fol- lowed by morphine. This study predicts that prolonged pain is an unrealized and clinically concerning consequence of the abundant use of opioids in chronic pain.

Research paper thumbnail of Structure-Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists

Journal of medicinal chemistry, Jan 5, 2015

Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-... more Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-Naltrexone acts as a Toll-like receptor 4 (TLR4) antagonist and has been shown to reverse neuropathic pain in rat studies. We designed and synthesized compounds based on (+)-naltrexone and (+)-noroxymorphone and evaluated their TLR4 antagonist activities by their effects on inhibiting lipopolysaccharide (LPS) induced TLR4 downstream nitric oxide (NO) production in microglia BV-2 cells. Alteration of the N-substituent in (+)-noroxymorphone gave us a potent TLR4 antagonist. The most promising analog, (+)-N-phenethylnoroxymorphone ((4S,4aR,7aS,12bR)-4a,9-dihydroxy-3-phenethyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 1j) showed ∼75 times better TLR-4 antagonist activity than (+)-naltrexone, and the ratio of its cell viability IC50, a measure of its toxicity, to TLR-4 antagonist activity (140 μM/1.4 μM) was among the best of the new analogs. This compound ...

Research paper thumbnail of Reactive aldehydes: a new player in inflammatory pain

Annals of translational medicine, 2015

Research paper thumbnail of Opioid-Induced Central Immune Signaling: Implications for Opioid Analgesia

Headache, Jan 31, 2015

Despite being the mainstay of pain management, opioids are limited in their clinical utility by a... more Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by Toll-like receptor 4, purinergic, ceramide, and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted.

Research paper thumbnail of (+)-Naltrexone is neuroprotective and promotes alternative activation in the mouse hippocampus after cardiac arrest/cardiopulmonary resuscitation

Brain, behavior, and immunity, Jan 13, 2015

Despite dramatic improvement in cardiopulmonary resuscitation (CPR) and other techniques for card... more Despite dramatic improvement in cardiopulmonary resuscitation (CPR) and other techniques for cardiac arrest (CA), the majority of survivors continue to show signs of decreased memory or executive cognitive function. Such memory impairment may be due to hippocampal CA1 neuronal death, which is delayed by several days after CA/CPR. Classical microgliosis in the CA1 region may contribute to neuronal death, yet the role of a key activation receptor Toll Like Receptor 4 (TLR4) has not been previously investigated for such neuronal death after CA/CPR. We show that (+)-naltrexone was neuroprotective after CA/CPR. TLR4 blockade was associated with decreased expression of markers for microglial/macrophage activation and T cell and B cell infiltration, as well as decreased pro-inflammatory cytokine levels. Notably, IL-10 expression was elevated in response to CA/CPR, but was not attenuated by (+)-naltrexone, suggesting that the local monocyte/microglial phenotype had shifted towards alternati...

Research paper thumbnail of The therapeutic potential of interleukin-10 in neuroimmune diseases

Neuropharmacology, Jan 4, 2014

Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammati... more Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammation that affects normal central nervous system signaling. Critically, many neuroimmune diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation of a variety of anti-inflammatory processes. This review will focus on the signaling pathways and function of IL-10, the current evidence for insufficiencies in IL-10 signaling/bioavailability in neuroimmune diseases, as well as the implications for IL-10-based therapies to treating such problems. We will review in detail four pathologies as examples of the common etiologies of such disease states, namely neuropathic pain (nerve trauma), osteoarthritis (peripheral inflammation), Parkinson's disease (neurodegeneration), and multiple sclerosis (autoimmune). A number of methods to increase IL-10 have been deve...

Research paper thumbnail of Immune-to-Brain Communication in Pain: Historical Perspectives, New Directions

Kusnecov/The Wiley-Blackwell, 2013

Research paper thumbnail of The anatomical distribution of trigeminal neuralgia: A perspective and future directions

Research paper thumbnail of Sex differences in mechanical allodynia: How can it be preclinically quantified and analyzed?

Translating promising preclinical drug discoveries to successful clinical trials remains a signif... more Translating promising preclinical drug discoveries to successful clinical trials remains a significant hurdle in pain research. Although animal models have significantly contributed to understanding chronic pain pathophysiology, the majority of research has focused on male rodents using testing procedures that produce sex difference data that do not align well with comparable clinical experiences. Additionally, the use of animal pain models presents ongoing ethical challenges demanding continuing refinement of preclinical methods. To this end, this study sought to test a quantitative allodynia assessment technique and associated statistical analysis in a modified graded nerve injury pain model with the aim to further examine sex differences in allodynia. Graded allodynia was established in male and female Sprague Dawley rats by altering the number of sutures placed around the sciatic nerve and quantified by the von Frey test. Linear mixed effects modeling regressed response on each fixed effect (sex, oestrus cycle, pain treatment). On comparison with other common von Frey assessment techniques, utilizing lower threshold filaments than those ordinarily tested, at 1 s intervals, appropriately and successfully investigated female mechanical allodynia, revealing significant sex and oestrus cycle difference across the graded allodynia that other common behavioral methods were unable to detect. Utilizing this different von Frey approach and graded allodynia model, a single suture inflicting less allodynia was sufficient to demonstrate exaggerated female mechanical allodynia throughout the phases of dioestrus and pro-oestrus. Refining the von Frey testing method, statistical analysis technique and the use of a graded model of chronic pain, allowed for examination of the influences on female mechanical nociception that other von Frey methods cannot provide.

Research paper thumbnail of Pioglitazone rapidly reduces neuropathic pain through astrocyte and non-genomic PPARγ mechanisms

PAIN, 2015

Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists redu... more Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid anti-hyperalgesic actions of PPARγ activation we administered pioglitazone to rats with spared nerve injury (SNI) and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 min of injection, consistent with a non-genomic mechanism. Systemic or intrathecal administration of GW9662, a PPARγ antagonist, inhibited the anti-hyperalgesic actions of intraperitoneal or intrathecal pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of non-genomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When co-administered intrathecally, anisomycin did not change pioglitazone anti-hyperalgesia at an early 7.5 min timepoint, further supporting a rapid non-genomic mechanism. At later timepoints anisomycin reduced pioglitazone anti-hyperalgesia, suggesting a delayed recruitment of genomic mechanisms. Pioglitazone reduction of SNI-induced increases in GFAP expression occurred more rapidly than expected, within 60 min. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent from canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation, and via both genomic and non-genomic PPARγ mechanisms.

Research paper thumbnail of Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain

The FASEB Journal, 2013

Rifampin has been used for the treatment of bacterial infections for many years. Clinically, rifa... more Rifampin has been used for the treatment of bacterial infections for many years. Clinically, rifampin has been found to possess immunomodulatory effects. However, the molecular target responsible for the immunosuppressive effects of rifampin is not known. Herein, we show that rifampin binds to myeloid differentiation protein 2 (MD-2), the key coreceptor for innate immune TLR4. Rifampin blocked TLR4 signaling induced by LPS, including NF-B activation and the overproduction of proinflammatory mediators nitric oxide, interleukin 1␤, and tumor necrosis factor ␣ in mouse microglia BV-2 cells and macrophage RAW 264.7 cells. Rifampin's inhibition of TLR4 signaling was also observed in immunocompetent rat primary macrophage, microglia, and astrocytes. Further, we show that rifampin (75 or 100 mg/kg b.i.d. for 3 d, intraperitoneal) suppressed allodynia induced by chronic constriction injury of the sciatic nerve and suppressed nerve injury-induced activation of microglia. Our findings indicate that MD-2 is a important target of rifampin in its inhibition of innate immune function and contributes to its clinically observed immune-suppressive effect. The results also suggest that rifampin may be repositioned as an agent for the treatment of neuropathic pain.-Wang, X., Grace,

Research paper thumbnail of TLR 2 and 4 Responsiveness from Isolated Peripheral Blood Mononuclear Cells from Rats and Humans as Potential Chronic Pain Biomarkers

PLoS ONE, 2013

Background: Chronic pain patients have increased peripheral blood mononuclear cell Interkeukin-1b... more Background: Chronic pain patients have increased peripheral blood mononuclear cell Interkeukin-1b production following TLR2 and TLR4 simulation. Here we have used a human-to-rat and rat-to-human approach to further investigate whether peripheral blood immune responses to TLR agonists might be suitable for development as possible systems biomarkers of chronic pain in humans.

Research paper thumbnail of Exploring the Neuroimmunopharmacology of Opioids: An Integrative Review of Mechanisms of Central Immune Signaling and Their Implications for Opioid Analgesia

Pharmacological Reviews, 2011

Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinic... more Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.

Research paper thumbnail of Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations

Journal of Psychopharmacology, 2010

Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative intera... more Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations Abstract Analysis of saccadic eye movements (SEMs) has previously been used to detect drug-and sleep-deprivation-induced sedation, but never in combination. We compared the effects of sleep deprivation and opioids on 10 opioid-naive with nine opioid-tolerant participants. The naive-participant study evaluated the effects of sleep deprivation alone, morphine alone and the combination; the tolerant-participant study compared day-to-day effects of alternate-daily-dosed buprenorphine and the combination of buprenorphine on the dosing day with sleep deprivation. Psychomotor impairment was measured using SEMs, a 5-minute pupil adaptation test (PAT), pupil light reflex (PLR) and alertness visual analogue scale (AVAS). The PAT and PLR did not detect sleep deprivation, in contrast to previous studies. Whilst consistently detecting sleep deprivation, the AVAS also detected buprenorphine in the tolerant study, but not morphine in the naive study. SEMs detected morphine alone and sleep deprivation alone as well as an additive interaction in the naive study and the effect of sleep deprivation in the tolerant study. The alternate-day buprenorphine dosing did not alter SEMs. The current study revealed greater SEMs, but not AVAS impairment in tolerant versus naive participants. The current study demonstrates that objective measures provide additional information to subjective measures and thus should be used in combination.

Research paper thumbnail of Immune priming and experimental glaucoma: the effect of prior systemic lipopolysaccharide challenge on tissue outcomes after optic nerve injury

Clinical & Experimental Ophthalmology, 2014

Background: Microglial activation is a prominent feature throughout the optic pathway in experime... more Background: Microglial activation is a prominent feature throughout the optic pathway in experimental glaucoma. Pro-inflammatory microglial activation may contribute to neurodegeneration through the release of pro-inflammatory cytokines and other inflammatory mediators. Systemic administration of lipopolysaccharide stimulates microglia to produce pro-inflammatory cytokines and chemoattractants. A preliminary investigation demonstrated proinflammatory microglial activation throughout the optic pathway following systemic lipopolysaccharide challenge. The aim of the current work was to investigate whether microglial priming with lipopolysaccharide would exacerbate optic nerve injury in rats following experimental glaucoma.

Research paper thumbnail of Harnessing pain heterogeneity and RNA transcriptome to explore chronic pain mechanisms

Brain, Behavior, and Immunity, 2011

Research paper thumbnail of Adoptive transfer of peripheral immune cells potentiates allodynia in a graded chronic constriction injury model of neuropathic pain

Brain, Behavior, and Immunity, 2011

Recent evidence demonstrates that peripheral immune cells contribute to the nociceptive hypersens... more Recent evidence demonstrates that peripheral immune cells contribute to the nociceptive hypersensitivity associated with neuropathic pain by infiltrating the central nervous system (CNS). We have recently developed a rat model of graded chronic constriction injury (CCI) by varying the exposure of the sciatic nerve and control non-nerve tissue to surgical placement of chromic gut. We demonstrate that splenocytes can contribute significantly to CCI-induced allodynia, as adoptive transfer of these cells from high pain donors to low pain recipients potentiates allodynia (P < 0.001). The phenomenon was replicated with peripheral blood mononuclear cells (P < 0.001). Adoptive transfer of allodynia was not achieved in sham recipients, indicating that peripheral immune cells are only capable of potentiating existing allodynia, rather than establishing allodynia. As adoptively transferred cells were found by flow cytometry to migrate to the spleen (P < 0.05) and potentiation of allodynia was prevented in splenectomised low pain recipients, adoptive transfer of high pain splenocytes may induce the migration of host-derived immune cells from the spleen to the CNS as observed by flow cytometry (P < 0.05). Importantly, intrathecal transfer of CD45 + cells prepared from spinal cords of high pain donors into low pain recipients led to potentiated allodynia (P < 0.001), confirming that infiltrating immune cells are not passive bystanders, but actively contribute to nociceptive hypersensitivity in the lumbar spinal cord.

Research paper thumbnail of Prior exposure to repeated morphine potentiates mechanical allodynia induced by peripheral inflammation and neuropathy

Brain, Behavior, and Immunity, 2012

Opioids, such as morphine, induce potent analgesia and are the gold standard for the treatment of... more Opioids, such as morphine, induce potent analgesia and are the gold standard for the treatment of acute pain. However, opioids also activate glia, inducing pro-inflammatory cytokine and chemokine production, which counter-regulates the analgesic properties of classical opioid receptor activation. It is not known how long these adverse pro-inflammatory effects last or whether prior morphine could sensitize the central nervous system (CNS) such that responses to a subsequent injury/inflammation would be exacerbated. Here, multiple models of inflammation or injury were induced two days after morphine (5 mg/ kg b.i.d., five days , s.c.) to test the generality of morphine sensitization of later pain. Prior repeated morphine potentiated the duration of allodynia from peripheral inflammatory challenges (complete Freund's adjuvant (CFA) into either hind paw skin or masseter muscle) and from peripheral neuropathy (mild chronic constriction injury (CCI) of the sciatic nerve). Spinal cord and trigeminal nucleus caudalis mRNAs were analyzed to identify whether repeated morphine was sufficient to alter CNS expression of proinflammatory response genes, measured two days after cessation of treatment. Prior morphine elevated IL-1b mRNA at both sites, MHC-II and TLR4 in the trigeminal nucleus caudalis but not spinal cord, but not glial activation markers at either site. Finally, in order to identify whether morphine sensitized proinflammatory cytokine release, spinal cord was isolated two days after morphine dosing for five days , and slices stimulated ex vivo with lipopolysaccharide. The morphine significantly induced TNFa protein release. Therefore, repeated morphine is able to sensitize subsequent CNS responses to immune challenges. j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / y b r b i Please cite this article in press as: Loram, L.C., et al. Prior exposure to repeated morphine potentiates mechanical allodynia induced by peripheral inflammation and neuropathy. Brain Behav. Immun. (2012), http://dx.

Research paper thumbnail of A novel animal model of graded neuropathic pain Utility to investigate mechanisms of population heterogeneity

The mechanisms underlying neuropathic pain are not well understood, resulting in unsatisfactory t... more The mechanisms underlying neuropathic pain are not well understood, resulting in unsatisfactory treatment outcomes for many patients. Animal models underpin much of the current understanding of pain mechanisms due to their perceived ability to mimic pain hypersensitivities; however, are limited by their binomial approach (pain vs. control), which does not reflect the clinical heterogeneity in nociceptive hypersensitivity. We modified the chronic constriction injury model by varying the number of sciatic nerve chromic gut sutures. Each Sprague Dawley rat received 4 pieces of chromic gut to control for the inflammatory challenge posed by the gut. Treatment groups were neuronal sutures (N), subcutaneous sutures (S) N0S0, N0S4, N1S3, N2S2 and N4S0. At postoperative (PO) day 29, there was a &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;dose-response&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; relationship between the number of perineural sutures and von Frey threshold (N0S4&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;N1S3&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;N2S2&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;N4S0, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05). This graded model was applied to investigate lumbar dorsal spinal cord glial activation marker expression. Microglial CD11b expression was positively correlated with graded allodynia in the ipsilateral dorsal horn (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.9) and associated in the dorsolateral funiculus (DLF; P=0.10, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.8) at PO day 14. Astrocyte GFAP expression was positively associated with graded allodynia in the ipsilateral dorsal horn (P=0.18, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.6) and ipsilateral DLF (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.9). DLF glial activation may represent a contributor to contralateral pain. Our novel graded model has a dynamic range, allowing sensitive detection of interactions and subtle influences on neuropathic pain processing.

Research paper thumbnail of Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

Neuroscience, 2014

P. M. Grace).

Research paper thumbnail of Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation

Opioid use for pain management has dramatically increased, with little assessment of potential pa... more Opioid use for pain management has dramatically increased, with little assessment of potential pathophysiological consequences for the primary pain condition. Here, a short course of morphine, starting 10 d after injury in male rats, paradoxically and remarkably doubled the duration of chronic constriction injury (CCI)-allodynia, months after morphine ceased. No such effect of opioids on neuropathic pain has previously been reported. Using pharmacologic and genetic ap- proaches, we discovered that the initiation and maintenance of this multimonth prolongation of neuropathic pain was mediated by a previously unidentified mechanism for spinal cord and pain—namely, morphine-induced spinal NOD-like receptor protein 3 (NLRP3) inflam- masomes and associated release of interleukin-1β (IL-1β). As spinal dorsal horn microglia expressed this signaling platform, these cells were selectively inhibited in vivo after transfection with a novel De- signer Receptor Exclusively Activated by Designer Drugs (DREADD). Multiday treatment with the DREADD-specific ligand clozapine-N- oxide prevented and enduringly reversed morphine-induced persis- tent sensitization for weeks to months after cessation of clozapine- N-oxide. These data demonstrate both the critical importance of microglia and that maintenance of chronic pain created by early ex- posure to opioids can be disrupted, resetting pain to normal. These data also provide strong support for the recent “two-hit hypothesis” of microglial priming, leading to exaggerated reactivity after the sec- ond challenge, documented here in the context of nerve injury fol- lowed by morphine. This study predicts that prolonged pain is an unrealized and clinically concerning consequence of the abundant use of opioids in chronic pain.

Research paper thumbnail of Structure-Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists

Journal of medicinal chemistry, Jan 5, 2015

Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-... more Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-Naltrexone acts as a Toll-like receptor 4 (TLR4) antagonist and has been shown to reverse neuropathic pain in rat studies. We designed and synthesized compounds based on (+)-naltrexone and (+)-noroxymorphone and evaluated their TLR4 antagonist activities by their effects on inhibiting lipopolysaccharide (LPS) induced TLR4 downstream nitric oxide (NO) production in microglia BV-2 cells. Alteration of the N-substituent in (+)-noroxymorphone gave us a potent TLR4 antagonist. The most promising analog, (+)-N-phenethylnoroxymorphone ((4S,4aR,7aS,12bR)-4a,9-dihydroxy-3-phenethyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 1j) showed ∼75 times better TLR-4 antagonist activity than (+)-naltrexone, and the ratio of its cell viability IC50, a measure of its toxicity, to TLR-4 antagonist activity (140 μM/1.4 μM) was among the best of the new analogs. This compound ...

Research paper thumbnail of Reactive aldehydes: a new player in inflammatory pain

Annals of translational medicine, 2015

Research paper thumbnail of Opioid-Induced Central Immune Signaling: Implications for Opioid Analgesia

Headache, Jan 31, 2015

Despite being the mainstay of pain management, opioids are limited in their clinical utility by a... more Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by Toll-like receptor 4, purinergic, ceramide, and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted.

Research paper thumbnail of (+)-Naltrexone is neuroprotective and promotes alternative activation in the mouse hippocampus after cardiac arrest/cardiopulmonary resuscitation

Brain, behavior, and immunity, Jan 13, 2015

Despite dramatic improvement in cardiopulmonary resuscitation (CPR) and other techniques for card... more Despite dramatic improvement in cardiopulmonary resuscitation (CPR) and other techniques for cardiac arrest (CA), the majority of survivors continue to show signs of decreased memory or executive cognitive function. Such memory impairment may be due to hippocampal CA1 neuronal death, which is delayed by several days after CA/CPR. Classical microgliosis in the CA1 region may contribute to neuronal death, yet the role of a key activation receptor Toll Like Receptor 4 (TLR4) has not been previously investigated for such neuronal death after CA/CPR. We show that (+)-naltrexone was neuroprotective after CA/CPR. TLR4 blockade was associated with decreased expression of markers for microglial/macrophage activation and T cell and B cell infiltration, as well as decreased pro-inflammatory cytokine levels. Notably, IL-10 expression was elevated in response to CA/CPR, but was not attenuated by (+)-naltrexone, suggesting that the local monocyte/microglial phenotype had shifted towards alternati...

Research paper thumbnail of The therapeutic potential of interleukin-10 in neuroimmune diseases

Neuropharmacology, Jan 4, 2014

Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammati... more Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammation that affects normal central nervous system signaling. Critically, many neuroimmune diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation of a variety of anti-inflammatory processes. This review will focus on the signaling pathways and function of IL-10, the current evidence for insufficiencies in IL-10 signaling/bioavailability in neuroimmune diseases, as well as the implications for IL-10-based therapies to treating such problems. We will review in detail four pathologies as examples of the common etiologies of such disease states, namely neuropathic pain (nerve trauma), osteoarthritis (peripheral inflammation), Parkinson's disease (neurodegeneration), and multiple sclerosis (autoimmune). A number of methods to increase IL-10 have been deve...

Research paper thumbnail of Immune-to-Brain Communication in Pain: Historical Perspectives, New Directions

Kusnecov/The Wiley-Blackwell, 2013

Research paper thumbnail of The anatomical distribution of trigeminal neuralgia: A perspective and future directions

Research paper thumbnail of Sex differences in mechanical allodynia: How can it be preclinically quantified and analyzed?

Translating promising preclinical drug discoveries to successful clinical trials remains a signif... more Translating promising preclinical drug discoveries to successful clinical trials remains a significant hurdle in pain research. Although animal models have significantly contributed to understanding chronic pain pathophysiology, the majority of research has focused on male rodents using testing procedures that produce sex difference data that do not align well with comparable clinical experiences. Additionally, the use of animal pain models presents ongoing ethical challenges demanding continuing refinement of preclinical methods. To this end, this study sought to test a quantitative allodynia assessment technique and associated statistical analysis in a modified graded nerve injury pain model with the aim to further examine sex differences in allodynia. Graded allodynia was established in male and female Sprague Dawley rats by altering the number of sutures placed around the sciatic nerve and quantified by the von Frey test. Linear mixed effects modeling regressed response on each fixed effect (sex, oestrus cycle, pain treatment). On comparison with other common von Frey assessment techniques, utilizing lower threshold filaments than those ordinarily tested, at 1 s intervals, appropriately and successfully investigated female mechanical allodynia, revealing significant sex and oestrus cycle difference across the graded allodynia that other common behavioral methods were unable to detect. Utilizing this different von Frey approach and graded allodynia model, a single suture inflicting less allodynia was sufficient to demonstrate exaggerated female mechanical allodynia throughout the phases of dioestrus and pro-oestrus. Refining the von Frey testing method, statistical analysis technique and the use of a graded model of chronic pain, allowed for examination of the influences on female mechanical nociception that other von Frey methods cannot provide.

Research paper thumbnail of Pioglitazone rapidly reduces neuropathic pain through astrocyte and non-genomic PPARγ mechanisms

PAIN, 2015

Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists redu... more Repeated administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists reduces neuropathic pain-like behavior and associated changes in glial activation in the spinal cord dorsal horn. As PPARγ is a nuclear receptor, sustained changes in gene expression are widely believed to be the mechanism of pain reduction. However, we recently reported that a single intrathecal injection of pioglitazone, a PPARγ agonist, reduced hyperalgesia within 30 minutes, a time frame that is typically less than that required for genomic mechanisms. To determine the very rapid anti-hyperalgesic actions of PPARγ activation we administered pioglitazone to rats with spared nerve injury (SNI) and evaluated hyperalgesia. Pioglitazone inhibited hyperalgesia within 5 min of injection, consistent with a non-genomic mechanism. Systemic or intrathecal administration of GW9662, a PPARγ antagonist, inhibited the anti-hyperalgesic actions of intraperitoneal or intrathecal pioglitazone, suggesting a spinal PPARγ-dependent mechanism. To further address the contribution of non-genomic mechanisms, we blocked new protein synthesis in the spinal cord with anisomycin. When co-administered intrathecally, anisomycin did not change pioglitazone anti-hyperalgesia at an early 7.5 min timepoint, further supporting a rapid non-genomic mechanism. At later timepoints anisomycin reduced pioglitazone anti-hyperalgesia, suggesting a delayed recruitment of genomic mechanisms. Pioglitazone reduction of SNI-induced increases in GFAP expression occurred more rapidly than expected, within 60 min. We are the first to show that activation of spinal PPARγ rapidly reduces neuropathic pain independent from canonical genomic activity. We conclude that acute pioglitazone inhibits neuropathic pain in part by reducing astrocyte activation, and via both genomic and non-genomic PPARγ mechanisms.

Research paper thumbnail of Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain

The FASEB Journal, 2013

Rifampin has been used for the treatment of bacterial infections for many years. Clinically, rifa... more Rifampin has been used for the treatment of bacterial infections for many years. Clinically, rifampin has been found to possess immunomodulatory effects. However, the molecular target responsible for the immunosuppressive effects of rifampin is not known. Herein, we show that rifampin binds to myeloid differentiation protein 2 (MD-2), the key coreceptor for innate immune TLR4. Rifampin blocked TLR4 signaling induced by LPS, including NF-B activation and the overproduction of proinflammatory mediators nitric oxide, interleukin 1␤, and tumor necrosis factor ␣ in mouse microglia BV-2 cells and macrophage RAW 264.7 cells. Rifampin's inhibition of TLR4 signaling was also observed in immunocompetent rat primary macrophage, microglia, and astrocytes. Further, we show that rifampin (75 or 100 mg/kg b.i.d. for 3 d, intraperitoneal) suppressed allodynia induced by chronic constriction injury of the sciatic nerve and suppressed nerve injury-induced activation of microglia. Our findings indicate that MD-2 is a important target of rifampin in its inhibition of innate immune function and contributes to its clinically observed immune-suppressive effect. The results also suggest that rifampin may be repositioned as an agent for the treatment of neuropathic pain.-Wang, X., Grace,

Research paper thumbnail of TLR 2 and 4 Responsiveness from Isolated Peripheral Blood Mononuclear Cells from Rats and Humans as Potential Chronic Pain Biomarkers

PLoS ONE, 2013

Background: Chronic pain patients have increased peripheral blood mononuclear cell Interkeukin-1b... more Background: Chronic pain patients have increased peripheral blood mononuclear cell Interkeukin-1b production following TLR2 and TLR4 simulation. Here we have used a human-to-rat and rat-to-human approach to further investigate whether peripheral blood immune responses to TLR agonists might be suitable for development as possible systems biomarkers of chronic pain in humans.

Research paper thumbnail of Exploring the Neuroimmunopharmacology of Opioids: An Integrative Review of Mechanisms of Central Immune Signaling and Their Implications for Opioid Analgesia

Pharmacological Reviews, 2011

Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinic... more Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.

Research paper thumbnail of Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations

Journal of Psychopharmacology, 2010

Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative intera... more Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations Abstract Analysis of saccadic eye movements (SEMs) has previously been used to detect drug-and sleep-deprivation-induced sedation, but never in combination. We compared the effects of sleep deprivation and opioids on 10 opioid-naive with nine opioid-tolerant participants. The naive-participant study evaluated the effects of sleep deprivation alone, morphine alone and the combination; the tolerant-participant study compared day-to-day effects of alternate-daily-dosed buprenorphine and the combination of buprenorphine on the dosing day with sleep deprivation. Psychomotor impairment was measured using SEMs, a 5-minute pupil adaptation test (PAT), pupil light reflex (PLR) and alertness visual analogue scale (AVAS). The PAT and PLR did not detect sleep deprivation, in contrast to previous studies. Whilst consistently detecting sleep deprivation, the AVAS also detected buprenorphine in the tolerant study, but not morphine in the naive study. SEMs detected morphine alone and sleep deprivation alone as well as an additive interaction in the naive study and the effect of sleep deprivation in the tolerant study. The alternate-day buprenorphine dosing did not alter SEMs. The current study revealed greater SEMs, but not AVAS impairment in tolerant versus naive participants. The current study demonstrates that objective measures provide additional information to subjective measures and thus should be used in combination.

Research paper thumbnail of Immune priming and experimental glaucoma: the effect of prior systemic lipopolysaccharide challenge on tissue outcomes after optic nerve injury

Clinical & Experimental Ophthalmology, 2014

Background: Microglial activation is a prominent feature throughout the optic pathway in experime... more Background: Microglial activation is a prominent feature throughout the optic pathway in experimental glaucoma. Pro-inflammatory microglial activation may contribute to neurodegeneration through the release of pro-inflammatory cytokines and other inflammatory mediators. Systemic administration of lipopolysaccharide stimulates microglia to produce pro-inflammatory cytokines and chemoattractants. A preliminary investigation demonstrated proinflammatory microglial activation throughout the optic pathway following systemic lipopolysaccharide challenge. The aim of the current work was to investigate whether microglial priming with lipopolysaccharide would exacerbate optic nerve injury in rats following experimental glaucoma.

Research paper thumbnail of Harnessing pain heterogeneity and RNA transcriptome to explore chronic pain mechanisms

Brain, Behavior, and Immunity, 2011

Research paper thumbnail of Adoptive transfer of peripheral immune cells potentiates allodynia in a graded chronic constriction injury model of neuropathic pain

Brain, Behavior, and Immunity, 2011

Recent evidence demonstrates that peripheral immune cells contribute to the nociceptive hypersens... more Recent evidence demonstrates that peripheral immune cells contribute to the nociceptive hypersensitivity associated with neuropathic pain by infiltrating the central nervous system (CNS). We have recently developed a rat model of graded chronic constriction injury (CCI) by varying the exposure of the sciatic nerve and control non-nerve tissue to surgical placement of chromic gut. We demonstrate that splenocytes can contribute significantly to CCI-induced allodynia, as adoptive transfer of these cells from high pain donors to low pain recipients potentiates allodynia (P < 0.001). The phenomenon was replicated with peripheral blood mononuclear cells (P < 0.001). Adoptive transfer of allodynia was not achieved in sham recipients, indicating that peripheral immune cells are only capable of potentiating existing allodynia, rather than establishing allodynia. As adoptively transferred cells were found by flow cytometry to migrate to the spleen (P < 0.05) and potentiation of allodynia was prevented in splenectomised low pain recipients, adoptive transfer of high pain splenocytes may induce the migration of host-derived immune cells from the spleen to the CNS as observed by flow cytometry (P < 0.05). Importantly, intrathecal transfer of CD45 + cells prepared from spinal cords of high pain donors into low pain recipients led to potentiated allodynia (P < 0.001), confirming that infiltrating immune cells are not passive bystanders, but actively contribute to nociceptive hypersensitivity in the lumbar spinal cord.

Research paper thumbnail of Prior exposure to repeated morphine potentiates mechanical allodynia induced by peripheral inflammation and neuropathy

Brain, Behavior, and Immunity, 2012

Opioids, such as morphine, induce potent analgesia and are the gold standard for the treatment of... more Opioids, such as morphine, induce potent analgesia and are the gold standard for the treatment of acute pain. However, opioids also activate glia, inducing pro-inflammatory cytokine and chemokine production, which counter-regulates the analgesic properties of classical opioid receptor activation. It is not known how long these adverse pro-inflammatory effects last or whether prior morphine could sensitize the central nervous system (CNS) such that responses to a subsequent injury/inflammation would be exacerbated. Here, multiple models of inflammation or injury were induced two days after morphine (5 mg/ kg b.i.d., five days , s.c.) to test the generality of morphine sensitization of later pain. Prior repeated morphine potentiated the duration of allodynia from peripheral inflammatory challenges (complete Freund's adjuvant (CFA) into either hind paw skin or masseter muscle) and from peripheral neuropathy (mild chronic constriction injury (CCI) of the sciatic nerve). Spinal cord and trigeminal nucleus caudalis mRNAs were analyzed to identify whether repeated morphine was sufficient to alter CNS expression of proinflammatory response genes, measured two days after cessation of treatment. Prior morphine elevated IL-1b mRNA at both sites, MHC-II and TLR4 in the trigeminal nucleus caudalis but not spinal cord, but not glial activation markers at either site. Finally, in order to identify whether morphine sensitized proinflammatory cytokine release, spinal cord was isolated two days after morphine dosing for five days , and slices stimulated ex vivo with lipopolysaccharide. The morphine significantly induced TNFa protein release. Therefore, repeated morphine is able to sensitize subsequent CNS responses to immune challenges. j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / y b r b i Please cite this article in press as: Loram, L.C., et al. Prior exposure to repeated morphine potentiates mechanical allodynia induced by peripheral inflammation and neuropathy. Brain Behav. Immun. (2012), http://dx.

Research paper thumbnail of A novel animal model of graded neuropathic pain Utility to investigate mechanisms of population heterogeneity

The mechanisms underlying neuropathic pain are not well understood, resulting in unsatisfactory t... more The mechanisms underlying neuropathic pain are not well understood, resulting in unsatisfactory treatment outcomes for many patients. Animal models underpin much of the current understanding of pain mechanisms due to their perceived ability to mimic pain hypersensitivities; however, are limited by their binomial approach (pain vs. control), which does not reflect the clinical heterogeneity in nociceptive hypersensitivity. We modified the chronic constriction injury model by varying the number of sciatic nerve chromic gut sutures. Each Sprague Dawley rat received 4 pieces of chromic gut to control for the inflammatory challenge posed by the gut. Treatment groups were neuronal sutures (N), subcutaneous sutures (S) N0S0, N0S4, N1S3, N2S2 and N4S0. At postoperative (PO) day 29, there was a &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;dose-response&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; relationship between the number of perineural sutures and von Frey threshold (N0S4&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;N1S3&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;N2S2&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;N4S0, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05). This graded model was applied to investigate lumbar dorsal spinal cord glial activation marker expression. Microglial CD11b expression was positively correlated with graded allodynia in the ipsilateral dorsal horn (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.9) and associated in the dorsolateral funiculus (DLF; P=0.10, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.8) at PO day 14. Astrocyte GFAP expression was positively associated with graded allodynia in the ipsilateral dorsal horn (P=0.18, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.6) and ipsilateral DLF (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05, r(2)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.9). DLF glial activation may represent a contributor to contralateral pain. Our novel graded model has a dynamic range, allowing sensitive detection of interactions and subtle influences on neuropathic pain processing.

Research paper thumbnail of Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

Neuroscience, 2014

P. M. Grace).